BIOLOGY HOW LIFE WORKS

Daniel Hartl Andrew Knoll Robert Lue Melissa Michael

ANDREW BERRY, ANDREW BIEWENER, BRIAN FARRELL, N. MICHELE HOLBROOK

BIOLOGY HOW LIFE WORKS this page left intentionally blank

BIOLOGY HOW LIFE WORKS

SECOND EDITION

James Morris

Daniel Hartl

HARVARD UNIVERSITY

Andrew Knoll

Robert Lue

HARVARD UNIVERSITY

Melissa Michael

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ANDREW BERRY, ANDREW BIEWENER, BRIAN FARRELL. N. MICHELE HOLBROOK

HARVARD UNIVERSITY

A Macmillan Education Imprint

PUBLISHER Kate Ahr Parker ACQUISITIONS EDITOR Beth Cole LEAD DEVELOPMENTAL EDITOR Lisa Samols SENIOR DEVELOPMENTAL EDITOR SUSAN MORAN DEVELOPMENTAL EDITOR Erica Champion EDITORIAL ASSISTANTS JANE TAYLOR, Alexandra Garrett, Abigail Fagan REVIEW COORDINATOR DONNA BRODMAN PROJECT MANAGER KAREN MISLER DIRECTOR OF MARKET DEVELOPMENT Lindsey Jaroszewicz EXECUTIVE MARKETING MANAGER Will MOORE

ART AND MEDIA DIRECTOR Robert Lue, Harvard University EXECUTIVE MEDIA EDITOR Amanda Nietzel SENIOR DEVELOPMENT EDITOR FOR TEACHING & LEARNING STRATEGIES Elaine Palucki SENIOR MEDIA PRODUCER Keri DiManigold PROJECT EDITOR Robert Errera MANUSCRIPT EDITOR Nancy Brooks DIRECTOR OF DESIGN, CONTENT MANAGEMENT Diana Blume DESIGN Tom Carling, Carling Design Inc. ART MANAGER Matt McAdams ILLUSTRATIONS Imagineering CREATIVE DIRECTOR Mark Mykytiuk, Imagineering PHOTO EDITOR Christine Buese PHOTO RESEARCHERS Lisa Passmore and Richard Fox PRODUCTION MANAGER Paul Rohloff COMPOSITION Sheridan Sellers PRINTING AND BINDING RR Donnelley COVER IMAGE: Thorsten Henn/Getty Images

Library of Congress Control Number: 2015950976

ISBN-13: 978-1-4641-2609-3 ISBN-10: 1-4641-2609-7

©2016, 2013 by W. H. Freeman and Company

All rights reserved.

Printed in the United States of America

First printing

Macmillan Learning W. H. Freeman and Company One New York Plaza Suite 4500 New York, NY 10004-1562 www.macmillanhighered.com

DEDICATION

To all who are curious about life and how it works

ABOUT THE AUTHORS

JAMES R. MORRIS is Professor of Biology at Brandeis University. He teaches a wide variety of courses for majors and non-majors, including introductory biology, evolution, genetics and genomics, epigenetics, comparative vertebrate anatomy, and a first-year seminar on Darwin's On the Origin of Species. He is the recipient of numerous teaching awards from Brandeis and Harvard. His research focuses on the rapidly growing field of epigenetics, making use of the fruit fly Drosophila melanogaster as a model organism. He currently pursues this research with undergraduates in order to give them the opportunity to do genuine, laboratory-based research early in their scientific careers. Dr. Morris received a PhD in genetics from Harvard University and an MD from Harvard Medical School. He was a Junior Fellow in the Society of Fellows at Harvard University, and a National Academies Education Fellow and Mentor in the Life Sciences. He also writes short essays on science, medicine, and teaching at his Science Whys blog (http://blogs.brandeis.edu/sciencewhys).

DANIEL L. HARTL is Higgins Professor of Biology in the Department of Organismic and Evolutionary Biology at Harvard University and Professor of Immunology and Infectious Diseases at the Harvard Chan School of Public Health. He has taught highly popular courses in genetics and evolution at both the introductory and advanced levels. His lab studies molecular evolutionary genetics and population genetics and genomics. Dr. Hartl is the recipient of the Samuel Weiner Outstanding Scholar Award as well as the Gold Medal of the Stazione Zoologica Anton Dohrn, Naples. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences. He has served as President of the Genetics Society of America and President of the Society for Molecular Biology and Evolution. Dr. Hartl's PhD is from the University of Wisconsin, and he did postdoctoral studies at the University of California, Berkeley. Before joining the Harvard faculty, he served on the faculties of the University of Minnesota, Purdue University, and Washington University Medical School. In addition to publishing more than 400 scientific articles, Dr. Hartl has authored or coauthored 30 books.

ANDREW H. KNOLL is Fisher Professor of Natural History in the Department of Organismic and Evolutionary Biology at Harvard University. He is also Professor of Earth and Planetary Sciences. Dr. Knoll teaches introductory courses in both departments. His research focuses on the early evolution of life, Precambrian environmental history, and the interconnections between the two. He has also worked extensively on the early evolution of animals, mass extinction, and plant evolution. He currently serves on the science team for NASA's mission to Mars. Dr. Knoll received the Phi Beta Kappa Book Award in Science for *Life on a Young Planet*. Other honors include the Paleontological Society Medal and Wollaston Medal of the Geological Society, London. He is a member of the National Academy of Sciences and a foreign member of the Royal Society of London. He received his PhD from Harvard University and then taught at Oberlin College before returning to Harvard. **ROBERT A. LUE** is Professor of Molecular and Cellular Biology at Harvard University and the Richard L. Menschel Faculty Director of the Derek Bok Center for Teaching and Learning. Dr. Lue has a longstanding commitment to interdisciplinary teaching and research, and chaired the faculty committee that developed the first integrated science foundation in the country to serve science majors as well as pre-medical students. The founding director of Life Sciences Education at Harvard, Dr. Lue led a complete redesign of the introductory curriculum, redefining how the university can more effectively foster new generations of scientists as well as science-literate citizens. Dr. Lue has also developed award-winning multimedia, including the animation "The Inner Life of the Cell." He has coauthored undergraduate biology textbooks and chaired education conferences on college biology for the National Academies and the National Science Foundation and on diversity in science for the Howard Hughes Medical Institute and the National Institutes of Health. In 2012, Dr. Lue's extensive work on using technology to enhance learning took a new direction when he became faculty director of university-wide online education initiative HarvardX; he now helps to shape Harvard's engagement in online learning to reinforce its commitment to teaching excellence. Dr. Lue earned his PhD from Harvard University.

MELISSA MICHAEL is Director for Core Curriculum and Assistant Director for Undergraduate Instruction for the School of Molecular and Cellular Biology at the University of Illinois at Urbana-Champaign. A cell biologist, she primarily focuses on the continuing development of the School's undergraduate curricula. She is currently engaged in several projects aimed at improving instruction and assessment at the course and program levels. Her research focuses primarily on how creative assessment strategies affect student learning outcomes, and how outcomes in large-enrollment courses can be improved through the use of formative assessment in active classrooms.

ANDREW BERRY is Lecturer in the Department of Organismic and Evolutionary Biology and an undergraduate advisor in the Life Sciences at Harvard University. With research interests in evolutionary biology and history of science, he teaches courses that either focus on one of the areas or combine the two. He has written two books: *Infinite Tropics*, a collection of the writings of Alfred Russel Wallace, and, with James D. Watson, DNA: *The Secret of Life*, which is part history, part exploration of the controversies surrounding DNA-based technologies.

ANDREW A. BIEWENER is Charles P. Lyman Professor of Biology in the Department of Organismic and Evolutionary Biology at Harvard University and Director of the Concord Field Station. He teaches both introductory and advanced courses in anatomy, physiology, and biomechanics. His research focuses on the comparative biomechanics and neuromuscular control of mammalian and avian locomotion, with relevance to biorobotics. He is currently Deputy Editor-in-Chief for the Journal of Experimental Biology. He also served as President of the American Society of Biomechanics. **BRIAN D. FARRELL** is Director of the David Rockefeller Center for Latin American Studies and Professor of Organismic and Evolutionary Biology and Curator in Entomology at the Museum of Comparative Zoology at Harvard University. He is an authority on coevolution between insects and plants and a specialist on the biology of beetles. He is the author of many scientific papers and book chapters on the evolution of ecological interactions between plants, beetles, and other insects in the tropics and temperate zone. Professor Farrell also spearheads initiatives to repatriate digital information from scientific specimens of insects in museums to their tropical countries of origin. In 2011–2012, he was a Fulbright Scholar to the Universidad Autónoma de Santo Domingo in the Dominican Republic. Professor Farrell received a BA degree in Zoology and Botany from the University of Vermont and MS and PhD degrees from the University of Maryland.

N. MICHELE HOLBROOK is Charles Bullard Professor of Forestry in the Department of Organismic and Evolutionary Biology at Harvard University. She teaches an introductory course on biodiversity as well as advanced courses in plant biology. She studies the physics and physiology of vascular transport in plants with the goal of understanding how constraints on the movement of water and solutes between soil and leaves influences ecological and evolutionary processes.

ASSESSMENT AUTHORS

JEAN HEITZ is a Distinguished Faculty Associate at the University of Wisconsin in Madison, WI. She has worked with the two-semester introductory sequence for biological sciences majors for over 30 years. Her primary roles include developing both interactive discussion/ recitation activities designed to uncover and modify misconceptions in biology and open-ended process-oriented labs designed to give students a more authentic experience with science. The lab experience includes engaging all second-semester students in independent research, either mentored research or a library-based meta-analysis of an open question in the literature. She is also the advisor to the Peer Learning Association and is actively involved in TA training. She has taught a graduate course in "Teaching College Biology," has presented active-learning workshops at a number of national and international meetings, and has published a variety of lab modules, workbooks, and articles related to biology education.

MARK HENS is Associate Professor of Biology at the University of North Carolina Greensboro, where he has taught introductory biology since 1996. He is a National Academies Education Mentor in the Life Sciences and is the director of his department's Introductory Biology Program. In this role, he guided the development of a comprehensive set of assessable student learning outcomes for the two-semester introductory biology course required of all science majors at UNCG. In various leadership roles in general education, both on his campus and statewide, he was instrumental in crafting a common set of assessable student learning outcomes for all natural science courses for which students receive general education credit on the sixteen campuses of the University of North Carolina system.

JOHN MERRILL is Director of the Biological Sciences Program in the College of Natural Science at Michigan State University. This program administers the core biology course sequence required for all science majors. He is a National Academies Education Mentor in the Life Sciences. In recent years he has focused his research on teaching and learning with emphasis on classroom interventions and enhanced assessment. A particularly active area is the NSF-funded development of computer tools for automatic scoring of students' open-ended responses to conceptual assessment questions, with the goal of making it feasible to use open-response questions in large-enrollment classes.

RANDALL PHILLIS is Associate Professor of Biology at the University of Massachusetts Amherst. He has taught in the majors introductory biology course at this institution for 19 years and is a National Academies Education Mentor in the Life Sciences. With help from the Pew Center for Academic Transformation (1999), he has been instrumental in transforming the introductory biology course to an active learning format that makes use of classroom communication systems. He also participates in an NSF-funded project to design modelbased reasoning assessment tools for use in class and on exams. These tools are being designed to develop and evaluate student scientific reasoning skills, with a focus on topics in introductory biology.

DEBRA PIRES is an Academic Administrator at the University of California, Los Angeles. She teaches the introductory courses in the Life Sciences Core Curriculum. She is also the Instructional Consultant for the Center for Education Innovation & Learning in the Sciences (CEILS). Many of her efforts are focused on curricular redesign of introductory biology courses. Through her work with CEILS, she coordinates faculty development workshops across several departments to facilitate pedagogical changes associated with curricular developments. Her current research focuses on what impact the experience of active learning pedagogies in lower division courses may have on student performance and concept retention in upper division courses.

ASSESSMENT CONTRIBUTORS

ELENA R. LOZOVSKY, Principal Staff Scientist, Department of Organismic and Evolutionary Biology, Harvard University

FULTON ROCKWELL, Research Associate, Department of Organismic and Evolutionary Biology, Harvard University

VISION AND STORY OF **BIOLOGY: HOW LIFE WORKS**

Dear students and instructors,

One of the most frequent questions we get about the second edition of *Biology: How Life Works* is, "Has science really changed that much in three years?"

ngoing discoveries in biology mean that a new edition of an introductory biology textbook will certainly have some new science content. But, more importantly, our second edition is new in the sense that we had the opportunity, for the first time, to listen to students and instructors who used *HLW* in the classroom. The second edition is responsive to this group and their input has proven invaluable.

What we heard from this community is that the philosophy of *HLW* resonates with students and instructors. They appreciate a streamlined text that rigorously focuses on introductory biology, an emphasis on integration, a modern treatment of biology, and equal attention to text, assessment, and media. These elements haven't changed—they are the threads that connect the first and second editions. In fact, all of the changes of the second edition; they are not simply add-ons.

We are particularly excited about the work we've done in assessment. In the first edition, we worked with a creative and dedicated team of assessment authors to create something wholly new: not a standard test bank, but a thoughtful, curated, well-aligned set of questions that can be used for teaching as well as testing. These questions are written at a variety of cognitive levels. In addition, they can be used in a variety of contexts, including pre-class, in-class, homework, and exam, providing a learning path for students.

Our approach was so well received that we took it a step further in the second edition. The *HLW* team is excited to have Melissa Michael, our lead assessment author in the first edition, join us as a lead author in the second edition. Her new role allows her to work more closely with the text and media, which makes for an even tighter alignment among these various components. Instructors have told us that they especially like the activities that can be used in class to foster active learning among students. In response, the second edition includes a rich set of activities across the introductory biology curriculum. Some are short, taking just a couple of minutes to explore a specific topic or concept. Others are longer, spanning several class periods and exploring topics and concepts across many chapters.

Although students and instructors appreciated a streamlined text, we also heard that more attention was needed in ecology. In response, we added a chapter that focuses on physical processes and global ecology. This new chapter also had a ripple effect throughout the later chapters of Part 2, giving us more space to explore other ecological concepts more deeply as well.

The media in *HLW* is many layered, so that a static visual synthesis on the page becomes animated online — and even interactive — through visual synthesis maps and simulations, using a consistent visual language and supported by assessment. Media resources for this new edition have been expanded to reflect its increased emphasis on global ecology — for example, there is a new Visual Synthesis figure and online map on the flow of matter and energy in ecosystems. We also developed additional media resources that focus on viruses, cells, and tissues.

We feel that this edition is a wonderful opportunity for us to continue to develop an integrated set of resources to support instructor teaching and student learning in introductory biology. Thank you for taking the time to use it in the classroom.

Sincerely, The Biology: How Life Works Author Team

RETHINKING **BIOLOGY**

The *Biology: How Life Works* team set out to create a resource for today's biology students that would reimagine how content is created and delivered. With this second edition, we've refined that vision using feedback from the many dedicated instructors and students who have become a part of the *How Life Works* community.

We remain committed to the philosophy of *How Life Works*: a streamlined, integrated, and modern approach to introductory biology.

Thematic

We wrote *How Life Works* with six themes in mind. We used these themes as a guide to make decisions about which concepts to include and how to organize them. The themes provide a framework that helps students see biology as a set of connected concepts rather than disparate facts.

- The scientific method is a deliberate way of asking and answering questions about the natural world.
- Life works according to fundamental principles of chemistry and physics.
- The fundamental unit of life is the cell.
- Evolution explains the features that organisms share and those that set them apart.
- Organisms interact with one another and with their physical environment, shaping ecological systems that sustain life.
- In the 21st century, humans have become major agents in ecology and evolution.

Selective

It is unrealistic to expect the majors course to cover everything. We envision *How Life Works* not as a reference for all of biology, but as a resource focused on foundational concepts, terms, and experiments. We explain fundamental topics carefully, with an appropriate amount of supporting detail, so that students leave an introductory biology class with a framework on which to build.

Integrated

How Life Works moves away from minimally related chapters to provide guidance on how concepts connect to one another and the bigger picture. Across the book, key concepts such as chemistry are presented in context and Cases and Visual Synthesis figures throughout the text provide a framework for connecting and assimilating information.

WHAT'S NEW IN THE SECOND EDITION?

Expanded ecology coverage on physical processes and global ecology provides additional emphasis on ecological concepts, while ensuring that content is integrated into the larger theme of evolution. *Learn more about the expanded ecology coverage on page xviii.*

Visual Synthesis Figures and Online Maps on the Flow of Matter and Energy through Ecosystems, Cellular Communities, and Viruses allow students to explore connections between concepts through dynamic visualizations. Learn more about the new media on page xix. Lead Author Melissa Michael guides our assessment team in refining and expanding our collection of thoughtful, well-curated assessments. Dr. Michael's role ensures a tight alignment between the assessments and the media and text. *Learn more on page xvi.*

A rich collection of in-class activities provides active learning materials for instructors to use in a variety of settings. *Learn more about the new in-class activities on page xvii.*

Improved LaunchPad functionality makes it easier to search and filter within our expansive collection of assessment questions. *Learn more about new LaunchPad functionality on page xii.*

TABLE OF CONTENTS

The table of contents is arranged in a familiar way to allow its easy use in a range of introductory biology courses. On closer look, there are significant differences that aim to help biology teachers incorporate the outlooks and research of biology today. **Key differences** are identified by \bigcirc and **unique chapters** by \bigcirc .

CHAPTER 1 Life: Chemical, Cellular, and Evolutionary Foundations

CASE 1 THE FIRST CELL: LIFE'S ORIGINS

 CHAPTER 2	The Molecules of Life	
 CHAPTER 3	Nucleic Acids and Transcription	
CHAPTER 4	Translation and Protein Structure	
CHAPTER 5	Organizing Principles: Lipids, Membranes, and Cell Compartments	
CHAPTER 6	Making Life Work: Capturing and Using Energy	
CHAPTER 7	Cellular Respiration: Harvesting Energy from Carbohydrates and Other Fuel Molecules	
CHAPTER 8	Photosynthesis: Using Sunlight to Build Carbohydrates	

CASE 2 CANCER: WHEN GOOD CELLS GO BAD

CHAPTER 9	Cell Signaling
CHAPTER 10	Cell and Tissue Architecture: Cytoskeleton, Cell Junctions, and
	Extracellular Matrix

CHAPTER 11 Cell Division: Variations, Regulation, and Cancer

CASE 3 YOU, FROM A TO T: YOUR PERSONAL GENOME

	CHAPTER 12	DNA Replication and Manipulation
	CHAPTER 13	Genomes
	CHAPTER 14	Mutation and DNA Repair
	CHAPTER 15	Genetic Variation
	CHAPTER 16	Mendelian Inheritance
	CHAPTER 17	Inheritance of Sex Chromosomes, Linked Genes, and Organelles
٢	CHAPTER 18	The Genetic and Environmental Basis of Complex Traits
	CHAPTER 19	Genetic and Epigenetic Regulation
	CHAPTER 20	Genes and Development

CASE 4 MALARIA: COEVOLUTION OF HUMANS AND A PARASITE

	CHAPTER 21	Evolution: How Genotypes and Phenotypes Change over Time
	CHAPTER 22	Species and Speciation
	CHAPTER 23	Evolutionary Patterns: Phylogeny and Fossils
0	CHAPTER 24	Human Origins and Evolution

EVOLUTION COVERAGE: Chapter 1 introduces evolution as a major theme of the book before discussing gene expression in Chapters 3 and 4 as a foundation for later discussions of the conservation of metabolic pathways and enzyme structure (Chapters 6–8) and genetic and phenotypic variation (Chapters 14 and 15). After the chapters on the mechanisms and patterns of evolution (Chapters 21–24), we discuss the diversity of all organisms in terms of adaptations and comparative features, culminating in ecology as the ultimate illustration of evolution in action.

CHEMISTRY: Chemistry is taught in the context of biological processes, emphasizing the key principle that structure determines function.

THE CELL: The first set of chapters emphasizes three key aspects of a cell—information flow (Chapters 3 and 4), actively maintaining a constant internal environment (Chapter 5), and harnessing energy (Chapters 6–8). Placing these basic points at the start of the textbook gives them emphasis and helps students build their knowledge of biology naturally.

CASE STUDIES: Biology is best understood when presented using real and engaging examples as a framework for synthesizing information. Eight carefully positioned Cases help provide this framework. For example, the Case about your personal genome is introduced before the set of chapters on genetics and is revisited in each of these chapters where it serves to reinforce important concepts.

GENETICS: The genetics chapters start with genomes and move to inheritance to provide a modern, molecular look at genetic variation and how traits are transmitted.

UNIQUE CHAPTERS: *Biology: How Life Works*, Second Edition includes chapters that don't traditionally appear in introductory biology texts, one in almost every major subject area. These novel chapters represent shifts toward a more modern conception of certain topics in biology and are identified by \bigcirc . "The approach to teaching is something my colleagues and I had been waiting for in a textbook. However, the text is flexible enough to accommodate a traditional teaching style."

– Steve Uyeda, Pima Community College

CHAPTER 25 Cycling Carbon

CASE 5 THE HUMAN MICROBIOME: DIVERSITY WITHIN

- CHAPTER 26 Bacteria and Archaea
- CHAPTER 27 Eukaryotic Cells: Origins and Diversity
- 🛟 CHAPTER 28 Being Multicellular

CASE 6 AGRICULTURE: FEEDING A GROWING POPULATION

	CHAPTER 29	Plant Structure and Function: Moving Photosynthesis onto Land
	CHAPTER 30	Plant Reproduction: Finding Mates and Dispersing Young
	CHAPTER 31	Plant Growth and Development
٢	CHAPTER 32	Plant Defense: Keeping the World Green
	CHAPTER 33	Plant Diversity
	CHAPTER 34	Fungi: Structure, Function, and Diversity
	CASE 7 PRE	DATOR-PREY: A GAME OF LIFE AND DEATH
	CHAPTER 35	Animal Nervous Systems
	CHAPTER 36	Animal Sensory Systems and Brain Function
	CHAPTER 37	Animal Movement: Muscles and Skeletons
	CHAPTER 38	Animal Endocrine Systems
	CHAPTER 39	Animal Cardiovascular and Respiratory Systems
	CHAPTER 40	Animal Metabolism, Nutrition, and Digestion
	CHAPTER 41	Animal Renal Systems: Water and Waste
	CHAPTER 42	Animal Reproduction and Development
	CHAPTER 43	Animal Immune Systems

CASE 8 BIODIVERSITY HOT SPOTS: RAIN FORESTS AND CORAL REEFS

CHAPTER 48	Biomes and Global Ecology	
 CHAPTER 47	Species Interactions, Communities, and Ecosystems	
CHAPTER 46	Population Ecology	
CHAPTER 45	Animal Behavior	
CHAPTER 44	Animal Diversity	

😯 CHAPTER 49 The Anthropocene: Humans as a Planetary Force

To hear the authors talk about the table of contents in more depth, visit **biologyhowlifeworks.com**

BIOGEOCHEMICAL CYCLES: We present the carbon cycle as a bridge between the molecular and organismal parts of the book, showing how different kinds of organisms use the biochemical processes discussed in the first half of the book to create a cycle that drives life on Earth and creates ecosystems. The carbon cycle along with other biogeochemical cycles—sulfur and nitrogen provides the conceptual backbone around which prokaryotic diversity is organized.

PLANT DEFENSE: The chapter on plant defense provides a strong ecological and case-based perspective on the strategies plants use to survive their exploitation by pathogens and herbivores.

DIVERSITY AND PHYSIOLOGY: Diversity follows physiology in order to provide a basis for understanding the groupings of organisms and to avoid presenting diversity as a list of names to memorize. When students understand how organisms function, they can understand the different groups in depth and organize them intuitively. To give instructors maximum flexibility, brief descriptions of unfamiliar organisms and the major groups of organisms have been layered in the physiology chapters, and the diversity chapters include a brief review of organismal form and function.

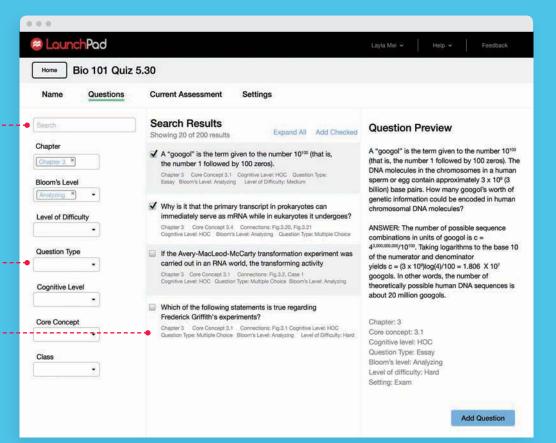
NEW CHAPTER 48: BIOMES AND GLOBAL

ECOLOGY is part of the greatly expanded ecology coverage on physical processes and global ecology. The new coverage broadens connections between ecological concepts, and is carefully integrated into the larger theme of evolution.

RETHINKING THE TEXTBOOK THROUGH LAUNCHPAD

rdinarily, textbooks are developed by first writing chapters, then making decisions about art and images, and finally assembling a test bank and ancillary media. *Biology: How Life Works* develops the text, visual program, and assessment at the same time. These three threads are tied to the same set of core concepts, share a common language, and use the same visual palette, which ensures a seamless learning experience for students throughout the course.

The text, visuals, and assessments come together most effectively through LaunchPad, Macmillan's integrated learning management system. In LaunchPad, students and instructors can access all components of *Biology: How Life Works*.


LaunchPad resources for *How Life Works* are flexible and aligned. Instructors have the ability to select the visuals, assessments, and activities that best suit their classroom and students. All resources are aligned to one another as well as to the text to ensure effectiveness in helping students build skills and develop knowledge necessary for a foundation in biology.

NEW IN LAUNCHPAD FOR *BIOLOGY: HOW LIFE WORKS*, SECOND EDITION

Functionality to search the question database and filter questions for a number of variables including Core Concept, difficulty level, Bloom's level, and class setting allows instructors to make best use of the robust assessment assets of *How Life Works*.

New question types include sequenced questions and multiple true-false. *Learn more on page xviii.*

Metadata tags for each question show at a glance information, including instructional guidance for select questions.

LAUNCHPAD

Where content counts. Where service matters. Where students learn.

LAUNCHPADWORKS.COM

Powerful, Simple, and Inviting

LaunchPad for *How Life Works* includes:

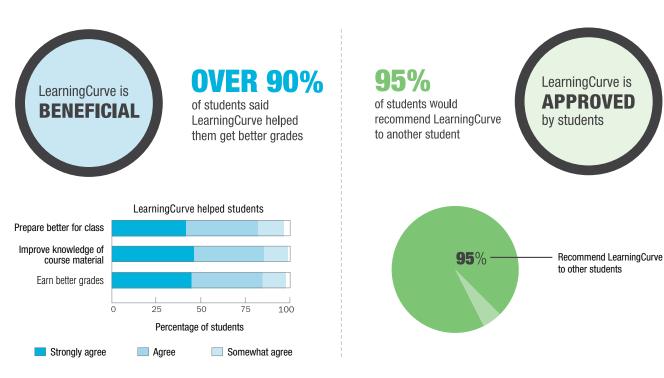
The complete *Biology: How Life Works* interactive e-Book

Carefully curated multimedia visuals and assessments, assignable by the instructor and easily accessible by students.

LearningCurve adaptive quizzing that puts "testing to learn" into action, with individualized question sets and feedback for each student based on his or her correct and incorrect responses. All the questions are tied back to the e-Book to encourage students to use the resources at hand.

Pre-built units that are easy to adapt and augment to fit your course.

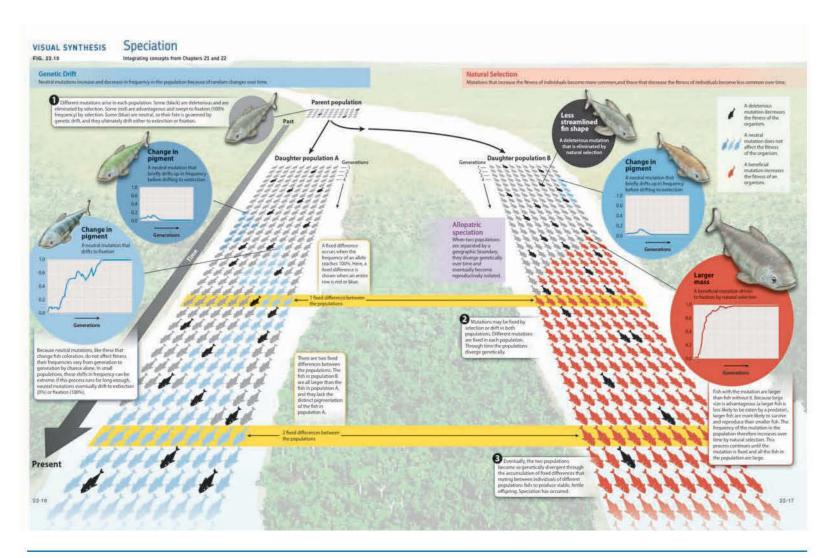
A Gradebook that provides clear feedback to students and instructors on performance in the course as a whole and individual assignment.

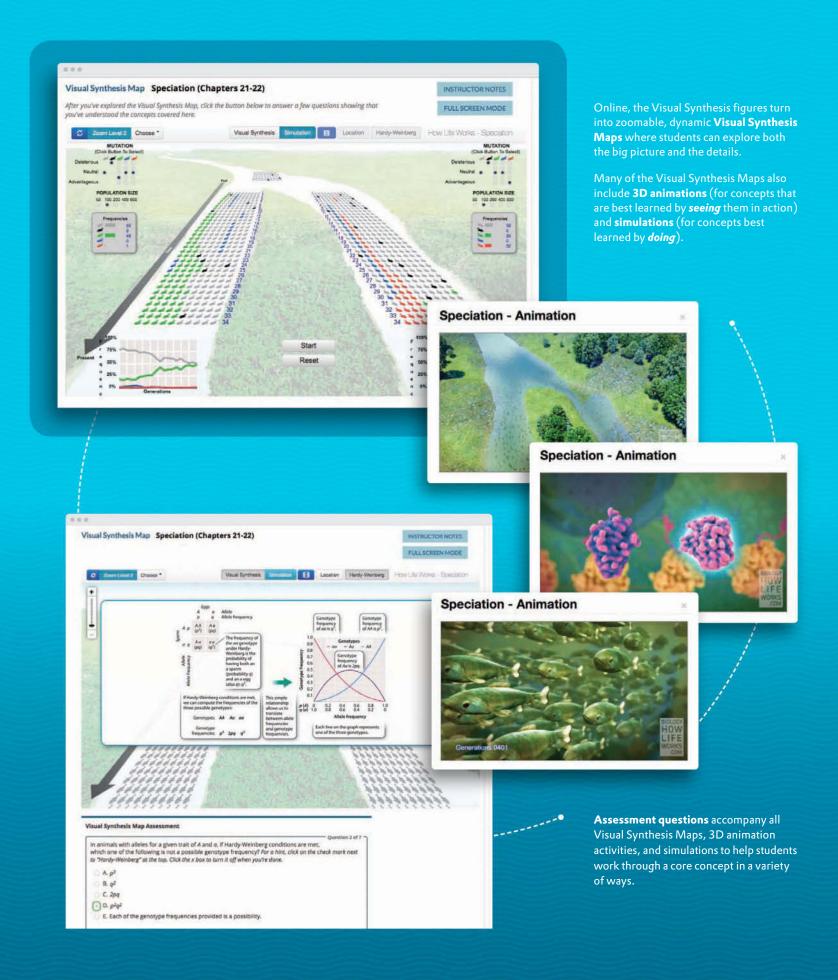

LMS integration allows LaunchPad to be easily integrated into your school's learning management system so your Gradebook and roster are always in sync.

LEARNINGCURVE

LEARNINGCURVEWORKS.COM

Students agree that LearningCurve is extremely helpful in their studies.


Macmillan's LearningCurve adaptive quizzing is part of almost every LaunchPad and has been enthusiastically embraced by students and instructors alike. LearningCurve provides specific feedback for every question and includes links to relevant sections of the e-Book. Questions are written exclusively for the LaunchPad in which they are offered and the question banks are robust and varied.

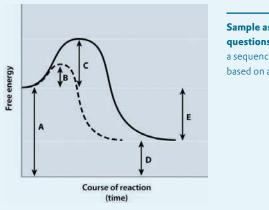

RETHINKING THE VISUAL PROGRAM

The art in the text of *How Life Works* and the associated media in LaunchPad were developed in coordination with the text and assessments to present an integrated and engaging visual experience for students.

Two of the biggest challenges introductory biology students face are connecting concepts across chapters and building a contextual picture, or visual framework, of a complex process. To help students think like biologists, we provide **Visual Synthesis** figures at twelve key points in the book. These figures bring together multiple images students have already seen into a visual summary, helping students see how individual concepts connect to tell a single story.

This Visual Synthesis figure on Speciation brings together multiple concepts from the chapters on evolution.

RETHINKING ASSESSMENT


Well-designed assessment is a tremendous tool for instructors in gauging student understanding, actively teaching students, and preparing students for exams. The *Biology: How Life Works* assessment author team applied decades of experience researching and implementing assessment practices to create a variety of questions and activities for pre-class, in-class, homework, and exam settings. All assessment items are carefully aligned with the text and media and have the flexibility to meet the needs of instructors with any experience level, classroom size, or teaching style.

Alignment

If the questions, exercises, and activities in the course aren't aligned with course objectives and materials, practice with these resources may not help students succeed in their exam or in future biology courses. Each *How Life Works* assessment item is carefully aligned to the goals and content of the text, and to the assessment items used in other parts of the course. Students are guided through a learning path that provides them with repeated and increasingly challenging practice with the important concepts illustrated in the text and media.

Flexibility

The *How Life Works* assessment authors teach in a variety of classroom sizes and styles, and recognize that there is a wide diversity of course goals and circumstances. Each set of materials, from in-class activities to exam questions, includes a spectrum of options for instructors. All the assessment items are housed in the LaunchPad platform, which is designed to allow instructors to assign and organize assessment items to suit the unique needs of their course and their students.

Sample assessment questions, including a sequenced question based on a graph. Is the reaction illustrated by the solid line endergonic or exergonic?

```
a.) endergonic b.) exergonic
```

Is the reaction illustrated by the dashed line endergonic or exergonic?

```
a.) endergonic b.) exergonic
```

Which of the following reactions would you predict could be coupled to ATP synthesis from ADP + Pi? Select all that apply.

- a.) creatine phosphate + H₂O \rightarrow creatine + Pi, Δ G -10.3 kcal/mol
- **b.**) phosphoenolpyruvate + H₂O \rightarrow pyruvate + Pi, Δ G -14.8 kcal/mol
- c.) glucose 6-phosphate + H₂O \rightarrow glucose + Pi, ΔG -3.3 kcal/mol
- d.) glucose 1-phosphate + H₂O \rightarrow glucose + Pi, ΔG 5.0 kcal/mol
- e.) glutamic acid + NH₃ \rightarrow glutamine, ΔG +3.4 kcal/mol

The emperor penguins of Antarctica live on a diet of fish and crustaceans obtained from the cold Antarctic seawaters. During their annual breeding cycle, however, they migrate across the frozen continent to their breeding grounds 50 miles away from the sea (and 50 miles away from their source of food). For over two months the male emperor penguins care for and incubate the eggs while the females return to the sea to feed. During this time a male penguin can lose up to 50% of its biomass (by dry weight). Where did this biomass go?

a.) It was converted to CO_2 and H_2O and then released.

- b.) It was converted to heat and then released.
- c.) It was converted to ATP molecules.

Answer the following questions about the reactions shown in the graph.

Which arrow indicates the activation energy of the catalyzed reaction?

```
□A | ■B | □C | □D | □E
```

Which arrow indicates the activation energy of the uncatalyzed reaction?

□ A | □ B | **■C** | □ D | □ E

Which arrow represents the free energy of the substrate?

A | **B** | **C** | **D** | **E**

Which arrow indicates the free energy of the products?

```
□ A | □ B | □ C | ■ D | □ E
```

Which arrow indicates the change in free energy ($\Delta G)$ of the reaction?

□ A | □ B | □ C | □ D | ■E

RETHINKING ACTIVITIES

Active learning exercises are an important component of the learning pathway and provide students with hands-on exploration of challenging topics and misconceptions. The second edition of *Biology: How Life Works* includes a new collection of over 40 in-class activities crafted to address the concepts that students find most challenging.

he activities collection was designed to cover a range of classroom sizes and complexity levels, and many can be easily adapted to suit the available time and preferred teaching style. Each activity includes a detailed activity guide for instructors. The activity guide introduces the activity, outlines learning objectives, and provides guidance on how to implement and customize the activity.

Many of the assessment questions and activities throughout How Life Works incorporate experimental thinking and data analysis. In addition, two activity types round out the assessment collection by providing applied practice with the data sets and examples from the text. Through **Working with Data** activities, students explore and analyze the experiment from a How Do We Know? figure from the text. **Mirror Experiment** activities introduce students to a new scientific study that relates to, or "mirrors," one of the How Do We Know? experiments and ask them to apply what they have learned about data analysis to this new scenario.

Excerpts of activities from Chapters 11 and 36

Mirror Experiment Activity 36.20

The experiment described below explored the same concepts as the one described in Figure 36.20 in the textbook. Read the description of the experiment and answer the questions below the description to practice interpreting data and understanding experimental design.

Mirror Expaniment activities practices skills described in the brief Experiment and Data Analysia Primera, which can be found by dicking on the "Resources" button on the upper right of your LaunchPad homepage. Certain questions in this activity draw on concepts described in the Experimental Design and Data and Data Presentation primers. Click on the "Key Terms" buttons to see definitions of terms used in the question, and click on the "Primer Section" button to pull up a relevant section from the primer.

Experiment

Background

As you have learned, the somatosensory cortex is responsible for processing "touch" stimuli. If someone were tickling the bottom of your foot, mechanoreceptors in the skin of your foot would fire action potentials. These signals would (utilimatible) be releved to the somatosensory cortex portion of your brain, and then your motor cortex. Following this chain of events, you might jerk your foot away from the tickler.

If you were to take a cross section of the somatosensory cortex, you would find that neurons are arranged in six distinct layers; the first layer would be composed of superficial neurons located near the brain surface, and the sloth layer would be composed of the "deepes" neurons (that is, those closes) to the white matter). How are neurons that respond to locul stimuli organized in the somatosensory cortex? Do neurons in the six different layers of the somatosensory cortex respond to different types of stimuli?

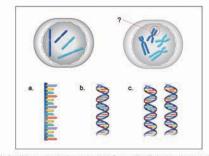
Hypothesis

Vernon Mountcastle hypothesized that researchers could create a diagram of the somatosensory cortex by tracking which neurons responded to different types of touch stimuli.

Experiment

Mountcastle exposed cats to two types of stimuli: (1) cutaneous or superficial stimuli, which included touching hairs or touching the skin; and (2) deep stimuli, which included bending and extending joints or touching the connective tissue surrounding muscles. He was able to track which neurons in the somatosensory cortex fired action potentials in response to these two types of stimuli, and measured their firing rates (Figure 1).

Results


Mountcastle determined that neurons involved in processing the same type of stimuli are organized in "vertical columns," These columns are composed of cells belonging to different layers of the somatosensory cortex stacked one on top of another. These results demonstrated that just because a neuron responds to deep stimuli does not mean that this neuron will be found deep within the brain; similarly, a neuron that responds to obe store stimuli will not necessarily be located near the brain surface. In addition to identifying vertical columns of neurons, Mountcastle

List of Materials

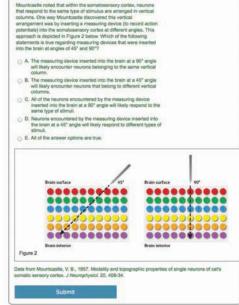
Activity Guide (file name: 1 Activity Guide Ch11 Double Double Double)
 In-class Presentation (file name: 2 In-class Presentation Ch11 Double Double)
 Exam Questions (file name: 3 Exam Qs Ch11 Double Double)

Description

Students are asked to identify corresponding depictions of chromosomes and DNA pre- and postreplication. The questions take the form shown in this sample, in which students must select one of the DNA representations that most closely depicts the chromosome labeled with the question mark.

The first clicker question, showing only the mitosis figures, will verify that the students recognize these image types. This might be skipped if the activity comes soon after covering mitosis.

This sequence works very well if students are encouraged to discuss the questions with each other, but with essentially no other instructor guidance or input. Furthermore, clicker results are **not** shown until the final clicker is completed.


Class size and timing

This activity can be used in essentially any class size since it is based on clicker questions. It can be quite brief, 5-10 minutes, even with summary discussion.

Connection to Vision and Change:

This activity is aimed at the Core Concept 3. Information Flow, Exchange, and Storage.

Question 1 of 8

WHAT'S NEW IN THE SECOND EDITION?

rom the start, *Biology: How Life Works* was envisioned not as a reference book for all of biology, but as a resource focused on foundational concepts, terms, and experiments, all placed in a framework that motivates student interest through a coherent and authentic presentation of current science. In preparing this edition, we carefully considered the latest breakthroughs and incremental, but nevertheless significant, changes across the fields of biology. We also reached out to adopters, instructors not using our book, and primary literature to determine what concepts and details are relevant, important, and necessary additions. Our integrated approach to text, media, and assessment means that all changes are carefully reflected in each of these areas.

MAJOR CHANGES AND UPDATES

We've greatly expanded the coverage of ecology in the second edition of *Biology: How Life Works.*

A new ecology chapter, Chapter 48:

Biomes and Global Ecology, takes a broad look at ecology on the largest scale. It begins with how and why climates are distributed as they are around the world and introduces Earth's major biomes. Biomes crystallize the relationships among ecology, evolution, and physical environment landscapes look different in different parts of the world because of the morphological and physiological adaptations that plants and animals have made to different climates. The chapter is distinguished by extensive discussion of biomes in the aquatic realm, especially in the oceans.

Chapter 47: Species Interactions, Communities, and Ecosystems **includes expanded coverage of the ways species interact with one another in communities**. This chapter now has more detail on facilitation, herbivory, and biodiversity.

Chapter 49: The Anthropocene: Humans as a Planetary Force **includes new discussions exploring how human activities affect ecology**. The chapter now examines fracking and its effects on the carbon cycle, habitat loss and its effects on biodiversity, and the overexploitation of resources and its effects on community ecology. The chapter ends with a new section on conservation biology that explores how conservationists are working to preserve natural habitats.

A new Visual Synthesis figure on the flow of matter and energy through ecosystems illustrates, explores, and

physically situates the relationships among concepts from Chapters 25, 26, 47, 48, and 49. In LaunchPad, students and instructors can interact with an accompanying dynamic, zoomable, and interactive Visual Synthesis Map based on this figure.

Our new collection of over 40 in-class activities provides tools for instructors to engage their students in active learning. In-class activities are designed to address difficult concepts, and can be used with a variety of classroom sizes and teaching styles. Each activity includes a detailed activity guide for instructors.

We've expanded our collection of high-quality assessment questions by adding over 1000 new questions. New questions are particularly focused on higher-order thinking, including questions based on figures or data, and questions that ask students to consider how perturbing a system would affect outcomes. As in the first edition, questions are carefully aligned with core concepts from the text. New and revised assessment questions also accompany Visual Synthesis Maps, simulations, animations, and other visual media, to more effectively probe student understanding of the media tools they've explored.

The second edition also includes several new question types. **Sequenced questions** ask students several, individually scored questions about a single scenario or system. These questions often build on one another to guide students from lower-order thinking to higher-order thinking about the same concept. **Multiple true–false questions** ask students several, individually scored true–false questions about a single scenario or system.

Improved functionality in LaunchPad allows instructors to search the question database and filter questions by a number of variables, including core concept, difficulty level, Bloom's level, and class setting. Metadata tags for each question show additional information at a glance, including instructional guidance for select questions.

NEW MEDIA

Cell Communities Visual Synthesis Map to accompany the printed Visual Synthesis figure

Virus Visual Synthesis Map to accompany the printed Visual Synthesis figure

New Visual Synthesis figure and map on the Flow of Matter and Energy in Ecosystems

Virus Video featuring author Rob Lue

Cell Membrane simulation

NEW TOPICS AND OTHER REVISIONS

New coverage of functional groups (Chapter 2)

Nucleotides now shown at physiological pH (Chapter 3)

Amino acids now shown at physiological pH (Chapter 4)

The story of the evolution of photosynthesis now brought together in a single major section at the end of Chapter 8 (section 8.5)

Chapters 9 and 10 streamlined to better match our mission statement

A new discussion of cellular response and what determines it (Chapter 9)

New inclusion of the trombone model of DNA replication (Chapter 12)

Addition of CRISPR technology (Chapter 12)

Expanded coverage of retrotransposons and reverse transcriptase (Chapter 13)

A new *How Do We Know?* figure explaining Mendel's experimental results (Chapter 16)

New coverage of the mechanism of X-inactivation (Chapter 19)

An expanded discussion of non-random mating and inbreeding depression (Chapter 21)

 Addition of the effect of mass extinctions on species diversity (Chapter 23)

Updated discussion of the relationship between Neanderthals and *Homo sapiens*, as well as Denisovans (Chapter 24)

Significantly revised link between the carbon cycle, biodiversity, and ecology (Chapter 25)

New Animations

Chapter 9: Basic Principles of Cell Signaling	
Chapter 9: G protein-coupled Receptor Signaling	
Chapter 9: Signal Amplification	
Chapter 10: Dynamic Nature of Microtubules	
Chapter 10: Motor Proteins	

Chapter 10: Dynamic Nature of Actin Filaments
Chapter 19: Lac Operon
Chapter 20: ABC Model of Floral Development
Chapter 40: Glucose Absorption in the Small Intestine
Chapter 42: Gastrulation

The following is a detailed list of content changes in this edition. These range from the very small (nucleotides shown at physiological pH) to quite substantial (an entire new chapter in the ecology section). Especially important changes are indicated with an asterisk (③).

New branching order of the eukaryote tree to reflect new research in the past three years (Chapter 27 and onward)

A new paragraph on ciliates (Chapter 27)

A new explanation of protist diversity (Chapter 27)

- A new discussion of plant nutrients with a table (Chapter 29)
- An enhanced discussion of seeds, including the development of the embryo and dispersal structures (Chapter 30)

New coverage of the genetic advantages of alternation of generations, and how it allows inbreeding (Chapter 30)

Addition of apomixis (Chapter 30)

The section on the role of plant sensory systems in the timing of plant reproduction moved from Chapter 30 to Chapter 31

Completely revised explanation of the basis for angiosperm diversity (Chapter 33)

Brief descriptions of unfamiliar organisms and the major groups of organisms layered in the animal physiology chapters to make it easier to teach physiology before diversity (Chapters 35-42)

- Brief review of organismal form and function in the plant and animal diversity chapters (Chapters 33 and 44), allowing these chapters to be used on their own or before the physiology chapters and giving instructors maximum flexibility
- A new section on the composition of blood (Chapter 39)

New diagrams of hormone feedback loops in the menstrual cycle (Chapter 42)

A new introduction to the immune system (Chapter 43)

A new discussion of nematodes (Chapter 44)

Introduction of a newly discovered species, *Dendrogramma enigmatica* (Chapter 44)

A simplified population growth equation (Chapter 46)

A new discussion of facilitation (Chapter 47)

An expanded discussion of herbivory (Chapter 47)

A new example of microbial symbionts (Chapter 47)

A new discussion of biodiversity and its importance (Chapter 47)

 An entirely new chapter on physical processes that underlie different biomes (Chapter 48)

- Differential solar energy around the globe and seasonality
- Wind and ocean currents
- \cdot Effects of circulation and topography on rainfall
- · Expanded discussion of terrestrial biomes
- · Freshwater and marine biomes
- Integration of concepts of biogeochemical cycles from Chapters 25 and 26 with ecological concepts
- Global patterns of primary production
- Global biodiversity
- A new exploration of the effect of fracking on the carbon cycle (Chapter 49)
- New coverage of habitat loss and biodiversity (Chapter 49)
- New coverage of overexploitation of resources and its effects on community ecology (Chapter 49)
- A new Core Concept and discussion of conservation biology (Chapter 49)

PRAISE FOR HOW LIFE WORKS

I have taught botany and then Biology II for over 20 years and have been very frustrated when I have realized how little knowledge students retained. Since we have gone to this textbook, I find that the questions students are asking in class are much more probing than those in the past, and the students seem much more engaged in the topics. I am hopeful that this approach will help our students be deeper thinkers and better scientists.

- GLORIA CADDELL, University of Central Oklahoma

One of the things that really sold me on this text was the LaunchPad system: easy to use; intuitive navigation; really good questions that match the sophistication of the text; love the LearningCurve activities; use most of the animations in my lectures!

- SARA CARLSON, University of Akron

This is the best set of questions I've ever seen in a textbook. They are thorough and the right mix of challenging the student with requiring memorization of important details.

- KURT ELLIOT, Northwest Vista College

We have all seen an improvement in our students' understanding of the material this year, the first year that we used the Morris text.

- ANUPAMA SESHAN, Emmanuel College

I like the figures, especially the 3D ones — we focus on "perceptual ability" training in our classes and figures that encourage students to think about cells in 3D are excellent!

- KIRKWOOD LAND, University of the Pacific

These chapters all seem to draw students through the course by referencing what they have learned previously and then adding new information. This makes the course seem like a complete story instead of a series of encyclopedia entries to be learned in isolation.

- TIM KROFT, Auburn University at Montgomery

We used this book last year and overall felt that it represented a major improvement from our previous text.

- PETER ARMBRUSTER, Georgetown University

Good questions are just as important as a good textbook. The available variety of assessment tools was very important for our adoption of this text.

MATTHEW BREWER, Georgia State University

If the whole book reads like this I would love to use it! This is the way I like to teach! I want students to understand rather than memorize and this chapter seems aimed at this.

- JENNIFER SCHRAMM, Chemeketa Community College

The artwork seems very clear-cut and geared to giving the students a very specific piece of information with a very simple example. This should greatly help students with forming a visual image of the various subjects.

- CHRIS PETRIE, Eastern Florida State College

The writing style is excellent, it makes a great narrative and incorporates key scientific experiments into the explanation of photosynthesis.

- DIANNE JENNING, Virginia Commonwealth University

I think *HLW* does a better job of presenting introductory material than our current text, which tends to overwhelm students.

- LAURA HILL, University of Vermont

With the quick checks and the experiments the first chapter already has the learners thinking about experiments and critical analysis.

- JOHN KOONTZ, University of Tennessee Knoxville

This book moves teaching away from merely understanding all of the bold terms in a textbook in order to spit them back on a multiple-choice test. I can use this text in order to prepare my students to understand and learn the general principles and concepts in biology and how those concepts translate across different levels of biology. I would not trade this textbook for any other book on the market.

-PAUL MOORE, Bowling Green State University

this page left intentionally blank

ACKNOWLEDGMENTS

Biology: How Life Works is not only a book. Instead, it is an integrated set of resources to support student learning and instructor teaching in introductory biology. As a result, we work closely with an entire community of authors, publishers, instructors, reviewers, and students. We would like to thank this dedicated group.

First and foremost, we thank the thousands of students we have collectively taught. Their curiosity, intelligence, and enthusiasm have been sources of motivation for all of us.

Our teachers and mentors have provided us with models of patience, creativity, and inquisitiveness that we strive to bring into our own teaching and research. They encourage us to be life-long learners, teachers, and scholars.

We feel very lucky to be a partner with W. H. Freeman and Macmillan Learning. From the start, they have embraced our project, giving us the space and room to achieve something unique, while at the same time providing guidance, support, and input from the broader community of instructors and students.

Beth Cole, our acquisitions editor, deserves thanks for taking on the second edition and becoming our leader. She keeps a watchful eye on important trends in science, education, and technology, carefully listens to what we want to do, and helps us put our aspirations in a larger context.

Lead developmental editor Lisa Samols continues to have just the right touch— the ability to listen as well as offer intelligent suggestions, serious with a touch of humor, quiet but persistent. Senior developmental editor Susan Moran has an eye for detail and the uncanny ability to read the manuscript like a student. Developmental editor Erica Champion brings intelligence and thoughtfulness to her edits.

Karen Misler kept us all on schedule in a clear and firm but always understanding and compassionate way.

Lindsey Jaroszewicz, our market development manager, is remarkable for her energy and enthusiasm, her attention to detail, and her creativity in ways to reach out to instructors and students. Will Moore, our marketing manager, refined the story of *How Life Works* 2e and works tirelessly with our sales teams to bring the second edition to instructors and students everywhere.

We thank Robert Errera for coordinating the move from manuscript to the page, and Nancy Brooks for helping to even out the prose. We also thank Diana Blume, our design director, Tom Carling, our text and cover designer, and Sheridan Sellers, our compositor. Together, they managed the look and feel of the book, coming up with creative solutions for page layout.

In digital media, we thank Amanda Nietzel for her editorial insight in making pedagogically useful media tools, and Keri deManigold and Chris Efstratiou for managing and coordinating the media and websites. They each took on this project with dedication, persistence, enthusiasm, and attention to detail that we deeply appreciate.

We are extremely grateful to Elaine Palucki for her insight into teaching and learning strategies, Donna Brodman for coordinating the many reviewers, and Jane Taylor, Alexandra Garrett, and Abigail Fagan for their consistent and tireless support.

Imagineering under the patient and intelligent guidance of Mark Mykytuik provided creative, insightful art to complement, support, and reinforce the text. We also thank our illustration coordinator, Matt McAdams, for skillfully guiding our collaboration with Imagineering. Christine Buese, our photo editor, and Lisa Passmore and Richard Fox, our photo researchers, provided us with a steady stream of stunning photos, and never gave up on those hard-to-find shots. Paul Rohloff, our production manager, ensured that the journey from manuscript to printing was seamless.

We would also like to acknowledge Kate Parker, Publisher of Sciences, Chuck Linsmeier, Vice President of Editorial, Susan Winslow, Managing Director, and Ken Michaels, Chief Executive Officer, for their support of *How Life Works* and our unique approach.

We also sincerely thank Erin Betters, Jere A. Boudell, Donna Koslowsky, and Jon Stoltzfus for thoughtful and insightful contributions to the assessment materials.

We are extremely grateful for all of the hard work and expertise of the sales representatives, regional managers, and regional sales specialists. We have enjoyed meeting and working with this dedicated sales staff, who are the ones that ultimately put the book in the hands of instructors.

Countless reviewers made invaluable contributions to this book and deserve special thanks. From catching mistakes to suggesting new and innovative ways to organize the content, they provided substantial input to the book. They brought their collective years of teaching to the project, and their suggestions are tangible in every chapter.

Finally, we would like to thank our families. None of this would have been possible without their support, inspiration, and encouragement.

Contributors, First Edition

Thank you to all the instructors who worked in collaboration with the authors and assessment authors to write Biology: How Life Works assessments, activities, and exercises.

Allison Alvarado, University of California, Los Angeles Peter Armbruster, Georgetown University Zane Barlow-Coleman, formerly of University of Massachusetts, Amherst James Bottesch, Brevard Community College Jessamina Blum, Yale University Jere Boudell, Clayton State University David Bos, Purdue University Laura Ciaccia West, Yale University* Laura DiCaprio, Ohio University Tod Duncan, University of Colorado, Denver Cindy Giffen, University of Wisconsin, Madison Paul Greenwood, Colby College Stanley Guffey, The University of Tennessee, Knoxville Alison Hill, Duke University Meg Horton, University of North Carolina at Greensboro

Kerry Kilburn, Old Dominion University Jo Kurdziel, University of Michigan David Lampe, Duquesne University Brenda Leady, University of Toledo Sara Marlatt, Yale University* Kelly McLaughlin, Tufts University Brad Mehrtens, University of Illinois at Urbana-Champaign Nancy Morvillo, Florida Southern College Jennifer Nauen, University of Delaware Kavita Oommen, Georgia State University Patricia Phelps, Austin Community College Melissa Reedy, University of Illinois at Urbana-Champaign Lindsay Rush, Yale University* Sukanya Subramanian, Collin College Michelle Withers, West Virginia University

*Graduate student, Yale University Scientific Teaching Fellow

Reviewers, Class Testers, and Focus Group Participants

Thank you to all the instructors who reviewed and/or class tested chapters, art, assessment questions, and other Biology: How Life Works materials.

First Edition

Thomas Abbott, University of Connecticut Tamarah Adair, Baylor University Sandra Adams, Montclair State University Jonathon Akin, University of Connecticut Eddie Alford, Arizona State University Chris Allen, College of the Mainland Sylvester Allred, Northern Arizona University Shivanthi Anandan, Drexel University Andrew Andres, University of Nevada, Las Vegas

Michael Angilletta, Arizona State University Jonathan Armbruster, Auburn University Jessica Armenta, Lone Star **College System** Brian Ashburner, University of Toledo Andrea Aspbury, Texas State University Nevin Aspinwall, Saint Louis University Felicitas Avendano, Grand View University Yael Avissar, Rhode Island College Ricardo Azpiroz, Richland College Jessica Baack, Southwestern **Illinois** College

Charles Baer, University of Florida Brian Bagatto, University of Akron Alan L. Baker, University of New Hampshire Ellen Baker, Santa Monica College Mitchell Balish, Miami University Teri Balser, University of Florida Paul Bates, University of Minnesota, Duluth Michel Baudry, University of Southern California Jerome Baudry, The University of Tennessee, Knoxville Mike Beach, Southern Polytechnic State University Andrew Beall, University of North Florida

Gregory Beaulieu, University of Victoria John Bell, Brigham Young University Michael Bell, Richland College Rebecca Bellone, University of Tampa Anne Bergey, Truman State University Laura Bermingham, University of Vermont Aimee Bernard, University of Colorado, Denver Annalisa Berta, San Diego State University Joydeep Bhattacharjee, University of Louisiana, Monroe Arlene Billock, University of Louisiana, Lafayette Daniel Blackburn, Trinity College Mark Blackmore, Valdosta State University Justin Blau, New York University Andrew Blaustein, Oregon State University Mary Bober, Santa Monica College Robert Bohanan, University of Wisconsin, Madison Jim Bonacum, University of Illinois at Springfield Laurie Bonneau, Trinity College David Bos, Purdue University James Bottesch, Brevard Community College Jere Boudell, Clayton State University Nancy Boury, Iowa State University Matthew Brewer, Georgia State University Mirjana Brockett, Georgia Institute of Technology Andrew Brower, Middle Tennessee State University

Heather Bruns, Ball State University Jill Buettner, Richland College Stephen Burnett, Clayton State University Steve Bush, Coastal Carolina University David Byres, Florida State College at Jacksonville James Campanella, Montclair State University Darlene Campbell, Cornell University Jennifer Campbell, North Carolina State University John Campbell, Northwest College David Canning, Murray State University Richard Cardullo, University of California, Riverside Sara Carlson, University of Akron Jeff Carmichael, University of North Dakota Dale Casamatta, University of North Florida Anne Casper, Eastern Michigan University David Champlin, University of Southern Maine Rebekah Chapman, Georgia State University Samantha Chapman, Villanova University Mark Chappell, University of California, Riverside P. Bryant Chase, Florida State University Young Cho, Eastern New Mexico University Tim Christensen, East Carolina University Steven Clark, University of Michigan Ethan Clotfelter, Amherst College

Catharina Coenen, Allegheny College Mary Colavito, Santa Monica College Craig Coleman, Brigham Young University Alex Collier, Armstrong Atlantic State University Sharon Collinge, University of Colorado, Boulder Jay Comeaux, McNeese State University Reid Compton, University of Maryland Ronald Cooper, University of California, Los Angeles Victoria Corbin, University of Kansas Asaph Cousins, Washington State University Will Crampton, University of Central Florida Kathryn Craven, Armstrong Atlantic State University Scott Crousillac, Louisiana State University Kelly Cude, College of the Canyons Stanley Cunningham, Arizona State University Karen Curto, University of Pittsburgh Bruce Cushing, The University of Akron Rebekka Darner, University of Florida James Dawson, Pittsburg State University Elizabeth De Stasio, Lawrence University Jennifer Dechaine, Central Washington University James Demastes, University of Northern Iowa D. Michael Denbow, Virginia Polytechnic Institute and State University Joseph Dent, McGill University

Terry Derting, Murray State University Jean DeSaix, University of North Carolina at Chapel Hill Donald Deters, Bowling Green State University Hudson DeYoe, The University of Texas, Pan American Leif Deyrup, University of the Cumberlands Laura DiCaprio, Ohio University Jesse Dillon, California State University, Long Beach Frank Dirrigl, The University of Texas, Pan American Kevin Dixon, Florida State University Elaine Dodge Lynch, Memorial University of Newfoundland Hartmut Doebel, George Washington University Jennifer Doll, Loyola University, Chicago Logan Donaldson, York University Blaise Dondji, Central Washington University Christine Donmoyer, Allegheny College James Dooley, Adelphi University Jennifer Doudna, University of California, Berkeley John DuBois, Middle Tennessee State University Richard Duhrkopf, Baylor University Kamal Dulai, University of California, Merced Arthur Dunham, University of Pennsylvania Mary Durant, Lone Star College System Roland Dute, Auburn University Andy Dyer, University of South Carolina, Aiken William Edwards, Niagara University

John Elder, Valdosta State University William Eldred, Boston University David Eldridge, Baylor University Inge Eley, Hudson Valley **Community College** Lisa Elfring, University of Arizona **Richard Elinson**, Duquesne University Kurt Elliott, Northwest Vista College Miles Engell, North Carolina State University Susan Erster, Stony Brook University Joseph Esdin, University of California, Los Angeles Jean Everett, College of Charleston Brent Ewers, University of Wyoming Melanie Fierro, Florida State College at Jacksonville Michael Fine, Virginia Commonwealth University Jonathan Fingerut, St. Joseph's University Ryan Fisher, Salem State University David Fitch, New York University Paul Fitzgerald, Northern Virginia **Community College** Jason Flores, University of North Carolina at Charlotte Matthias Foellmer, Adelphi University Barbara Frase, Bradley University Caitlin Gabor, Texas State University Michael Gaines, University of Miami Jane Gallagher, The City College of New York, The City University of New York Kathryn Gardner, Boston University

J. Yvette Gardner, Clayton State University Gillian Gass, Dalhousie University Jason Gee, East Carolina University Topher Gee, University of North Carolina at Charlotte Vaughn Gehle, Southwest Minnesota State University Tom Gehring, Central Michigan University John Geiser, Western Michigan University Alex Georgakilas, East Carolina University Peter Germroth, Hillsborough **Community College** Arundhati Ghosh, University of Pittsburgh Carol Gibbons Kroeker, University of Calgary Phil Gibson, University of Oklahoma Cindee Giffen, University of Wisconsin, Madison Matthew Gilg, University of North Florida Sharon Gillies, University of the Fraser Valley Leonard Ginsberg, Western Michigan University Florence Gleason, University of Minnesota Russ Goddard, Valdosta State University Miriam Golbert, College of the Canyons Jessica Goldstein, Barnard College, Columbia University Steven Gorsich, Central Michigan University Sandra Grebe, Lone Star College System Robert Greene, Niagara University Ann Grens, Indiana University, South Bend

Theresa Grove, Valdosta State University Stanley Guffey, The University of Tennessee, Knoxville Nancy Guild, University of Colorado, Boulder Lonnie Guralnick, Roger Williams University Laura Hake, Boston College Kimberly Hammond, University of California, Riverside Paul Hapeman, University of Florida Luke Harmon, University of Idaho Sally Harmych, University of Toledo Jacob Harney, University of Hartford Sherry Harrel, Eastern Kentucky University Dale Harrington, Caldwell Community College and **Technical Institute** J. Scott Harrison, Georgia Southern University Diane Hartman, Baylor University Mary Haskins, Rockhurst University Bernard Hauser, University of Florida David Haymer, University of Hawaii David Hearn, Towson University Marshal Hedin, San Diego State University Paul Heideman, College of William and Mary Gary Heisermann, Salem State University Brian Helmuth, University of South Carolina Christopher Herlihy, Middle Tennessee State University Albert Herrera, University of Southern California Brad Hersh, Allegheny College

David Hicks, The University of Texas at Brownsville Karen Hicks, Kenyon College Alison Hill, Duke University Kendra Hill, South Dakota State University Jay Hodgson, Armstrong Atlantic State University John Hoffman, Arcadia University Jill Holliday, University of Florida Sara Hoot, University of Wisconsin, Milwaukee Margaret Horton, University of North Carolina at Greensboro Lynne Houck, Oregon State University Kelly Howe, University of New Mexico William Huddleston, University of Calgary Jodi Huggenvik, Southern Illinois University Melissa Hughes, College of Charleston Randy Hunt, Indiana University Southeast Tony Huntley, Saddleback College Brian Hyatt, Bethel College Jeba Inbarasu, Metropolitan **Community College** Colin Jackson, The University of Mississippi Eric Jellen, Brigham Young University Dianne Jennings, Virginia Commonwealth University Scott Johnson, Wake Technical **Community College** Mark Johnston, Dalhousie University Susan Jorstad, University of Arizona Stephen Juris, Central Michigan University Julie Kang, University of Northern Iowa

Jonghoon Kang, Valdosta State University George Karleskint, St. Louis Community College at Meramec David Karowe, Western Michigan University Judy Kaufman, Monroe **Community College** Nancy Kaufmann, University of Pittsburgh John Kauwe, Brigham Young University Elena Keeling, California Polytechnic State University Jill Keeney, Juniata College Tamara Kelly, York University Chris Kennedy, Simon Fraser University Bretton Kent, University of Maryland Jake Kerby, University of South Dakota Jeffrey Kiggins, Monroe **Community College** Scott Kight, Montclair State University Stephen Kilpatrick, University of Pittsburgh, Johnstown Kelly Kissane, University of Nevada, Reno David Kittlesen, University of Virginia Jennifer Kneafsey, Tulsa **Community College** Jennifer Knight, University of Colorado, Boulder Ross Koning, Eastern Connecticut State University David Kooyman, Brigham Young University Olga Kopp, Utah Valley University Anna Koshy, Houston **Community College** Todd Kostman, University of Wisconsin, Oshkosh

Peter Kourtev, Central Michigan University William Kroll, Loyola University, Chicago Dave Kubien, University of New Brunswick Allen Kurta, Eastern Michigan University Ellen Lamb, University of North Carolina at Greensboro Troy Ladine, East Texas Baptist University David Lampe, Duquesne University Evan Lampert, Gainesville State College James Langeland, Kalamazoo College John Latto, University of California, Santa Barbara Brenda Leady, University of Toledo Jennifer Leavey, Georgia Institute ofTechnology Hugh Lefcort, Gonzaga University Brenda Leicht, University of Iowa Craig Lending, The College at Brockport, The State University of New York Nathan Lents, John Jay College of Criminal Justice, The City University of New York Michael Leonardo, Coe College Army Lester, Kennesaw State University Cynthia Littlejohn, University of Southern Mississippi Zhiming Liu, Eastern New Mexico University Jonathan Lochamy, Georgia Perimeter College Suzanne Long, Monroe **Community College** Julia Loreth, University of North Carolina at Greensboro Jennifer Louten, Southern Polytechnic State University

Janet Loxterman, Idaho State University Ford Lux, Metropolitan State College of Denver José-Luis Machado, Swarthmore College C. Smoot Major, University of South Alabama Charles Mallery, University of Miami Mark Maloney, Spelman College Carroll Mann, Florida State College at Jacksonville Carol Mapes, Kutztown University of Pennsylvania Nilo Marin, Broward College Diane Marshall, University of New Mexico Heather Masonjones, University ofTampa Scott Mateer, Armstrong Atlantic State University Luciano Matzkin, The University of Alabama in Huntsville Robert Maxwell, Georgia State University Meghan May, Towson University Michael McGinnis, Spelman College Kathleen McGuire, San Diego State University Maureen McHale, Truman State University Shannon McQuaig, St. Petersburg College Susan McRae, East Carolina University Lori McRae, University of Tampa Mark Meade, Jacksonville State University Brad Mehrtens, University of Illinois at Urbana-Champaign Michael Meighan, University of California, Berkeley Douglas Meikle, Miami University

Richard Merritt, Houston **Community College** Jennifer Metzler, Ball State University James Mickle, North Carolina State University Brian Miller, Middle Tennessee State University Allison Miller, Saint Louis University Yuko Miyamoto, Elon University Ivona Mladenovic, Simon Fraser University Marcie Moehnke, Baylor University Chad Montgomery, Truman State University Jennifer Mook, Gainesville State College Daniel Moon, University of North Florida Jamie Moon, University of North Florida Jeanelle Morgan, Gainesville State College David Morgan, University of West Georgia Julie Morris, Armstrong Atlantic State University Becky Morrow, Duquesne University Mark Mort, University of Kansas Nancy Morvillo, Florida Southern College Anthony Moss, Auburn University Mario Mota, University of Central Florida Alexander Motten, Duke University Tim Mulkey, Indiana State University John Mull, Weber State University Michael Muller, University of Illinois at Chicago Beth Mullin, The University of Tennessee, Knoxville

Paul Narguizian, California State University, Los Angeles Jennifer Nauen, University of Delaware Paul Nealen, Indiana University of Pennsylvania Diana Nemergut, University of Colorado, Boulder Kathryn Nette, Cuyamaca College Jacalyn Newman, University of Pittsburgh James Nienow, Valdosta State University Alexey Nikitin, Grand Valley State University Tanya Noel, York University Fran Norflus, Clayton State University Celia Norman, Arapahoe **Community College** Eric Norstrom, DePaul University Jorge Obeso, Miami Dade College Kavita Oommen, Georgia State University David Oppenheimer, University of Florida Joseph Orkwiszewski, Villanova University Rebecca Orr, Collin College Don Padgett, Bridgewater State College Joanna Padolina, Virginia Commonwealth University One Pagan, West Chester University Kathleen Page, Bucknell University Daniel Papaj, University of Arizona Pamela Pape-Lindstrom, Everett **Community College** Bruce Patterson, University of Arizona, Tucson Shelley Penrod, Lone Star College System Roger Persell, Hunter College, The City University of New York

John Peters, College of Charleston Chris Petrie, Brevard Community College Patricia Phelps, Austin **Community College** Steven Phelps, The University of Texas at Austin Kristin Picardo, St. John Fisher College Aaron Pierce, Nicholls State University Debra Pires, University of California, Los Angeles Thomas Pitzer, Florida International University Nicola Plowes, Arizona State University Crima Pogge, City College of San Francisco Darren Pollock, Eastern New Mexico University Kenneth Pruitt, The University of Texas at Brownsville Sonja Pyott, University of North Carolina at Wilmington Rajinder Ranu, Colorado State University Philip Rea, University of Pennsylvania Amy Reber, Georgia State University Ahnya Redman, West Virginia University Melissa Reedy, University of Illinois at Urbana-Champaign Brian Ring, Valdosta State University David Rintoul, Kansas State University Michael Rischbieter, Presbyterian College Laurel Roberts, University of Pittsburgh George Robinson, The University at Albany, The State University of New York

Peggy Rolfsen, Cincinnati State Technical and Community College Mike Rosenzweig, Virginia Polytechnic Institute and State University Doug Rouse, University of Wisconsin, Madison Yelena Rudayeva, Palm Beach State College Ann Rushing, Baylor University Shereen Sabet, La Sierra University Rebecca Safran, University of Colorado Peter Sakaris, Southern Polytechnic State University Thomas Sasek, University of Louisiana, Monroe Udo Savalli, Arizona State University H. Jochen Schenk, California State University, Fullerton Gregory Schmaltz, University of the Fraser Valley Jean Schmidt, University of Pittsburgh Andrew Schnabel, Indiana University, South Bend Roxann Schroeder, Humboldt State University David Schultz, University of Missouri, Columbia Andrea Schwarzbach, The University of Texas at Brownsville Erik Scully, Towson University Robert Seagull, Hofstra University Pramila Sen, Houston Community College Alice Sessions, Austin **Community College** Vijay Setaluri, University of Wisconsin Jyotsna Sharma, The University of Texas at San Antonio

Elizabeth Sharpe-Aparicio, Blinn College Patty Shields, University of Maryland Cara Shillington, Eastern Michigan University James Shinkle, Trinity University Rebecca Shipe, University of California, Los Angeles Marcia Shofner, University of Maryland Laurie Shornick, Saint Louis University Jill Sible, Virginia Polytechnic Institute and State University Allison Silveus, Tarrant County College Kristin Simokat, University of Idaho Sue Simon-Westendorf, Ohio University Sedonia Sipes, Southern Illinois University, Carbondale John Skillman, California State University, San Bernardino Marek Sliwinski, University of Northern Iowa Felisa Smith, University of New Mexico John Sollinger, Southern Oregon University Scott Solomon, Rice University Morvarid Soltani-Bejnood, The University of Tennessee Vladimir Spiegelman, University of Wisconsin, Madison Chrissy Spencer, Georgia Institute ofTechnology Kathryn Spilios, Boston University Ashley Spring, Brevard **Community College** Bruce Stallsmith, The University of Alabama in Huntsville Jennifer Stanford, Drexel University

Barbara Stegenga, University of North Carolina, Chapel Hill Patricia Steinke, San Jacinto College, Central Campus Asha Stephens, College of the Mainland Robert Steven, University of Toledo Eric Strauss, University of Wisconsin, La Crosse Sukanya Subramanian, Collin College Mark Sugalski, Southern Polytechnic State University Brad Swanson, Central Michigan University Ken Sweat, Arizona State University David Tam, University of North Texas Ignatius Tan, New York University William Taylor, University of Toledo Christine Terry, Lynchburg College Sharon Thoma, University of Wisconsin, Madison Pamela Thomas, University of Central Florida Carol Thornber, University of Rhode Island Patrick Thorpe, Grand Valley State University Briana Timmerman, University of South Carolina Chris Todd, University of Saskatchewan Gail Tompkins, Wake Technical **Community College** Martin Tracey, Florida International University Randall Tracy, Worcester State University James Traniello, Boston University Bibit Traut, City College of San Francisco

Terry Trier, Grand Valley State University Stephen Trumble, Baylor University Jan Trybula, The State University of New York at Potsdam Alexa Tullis, University of Puget Sound Marsha Turell, Houston Community College Mary Tyler, University of Maine Marcel van Tuinen, University of North Carolina at Wilmington Dirk Vanderklein, Montclair State University Jorge Vasquez-Kool, Wake **Technical Community College** William Velhagen, New York University Dennis Venema, Trinity Western University Laura Vogel, North Carolina State University Jyoti Wagle, Houston Community College Jeff Walker, University of Southern Maine Gary Walker, Appalachian State University Andrea Ward, Adelphi University Fred Wasserman, Boston University Elizabeth Waters, San Diego State University Douglas Watson, The University of Alabama at Birmingham Matthew Weand, Southern Polytechnic State University Michael Weber, Carleton University Cindy Wedig, The University of Texas, Pan American Brad Wetherbee, University of Rhode Island Debbie Wheeler, University of the Fraser Valley

Clay White, Lone Star College System Lisa Whitenack, Allegheny College Maggie Whitson, Northern Kentucky University Stacey Wild East, Tennessee State University Herbert Wildey, Arizona State University and Phoenix College David Wilkes, Indiana University, South Bend Lisa Williams, Northern Virginia **Community College** Elizabeth Willott, University of Arizona Mark Wilson, Humboldt State University Ken Wilson, University of Saskatchewan Bob Winning, Eastern Michigan University Candace Winstead, California Polytechnic State University Robert Wise, University of Wisconsin, Oshkosh D. Reid Wiseman, College of Charleston MaryJo Witz, Monroe **Community College** David Wolfe, American River College Kevin Woo, University of Central Florida Denise Woodward, Penn State Shawn Wright, Central New Mexico Community College Grace Wyngaard, James Madison University Aimee Wyrick, Pacific Union College Joanna Wysocka-Diller, Auburn University Ken Yasukawa, Beloit College John Yoder, The University of Alabama

Kelly Young, California State University, Long Beach James Yount, Brevard Community College Min Zhong, Auburn University Second Edition Barbara J. Abraham, Hampton University Jason Adams, College of DuPage Sandra D. Adams, Montclair State University Richard Adler, University of Michigan, Dearborn Nancy Aguilar-Roca, University of California, Irvine Shivanthi Anandan, Drexel University Lynn Anderson-Carpenter, University of Michigan Christine Andrews, The University of Chicago Peter Armbruster, Georgetown University Jessica Armenta, Austin **Community College** Brian Ashburner, University of Toledo Ann J. Auman, Pacific Lutheran University Nicanor Austriaco, Providence College Felicitas Avendano, Grand View University J. P. Avery, University of North Florida Jim Bader, Case Western Reserve University Ellen Baker, Santa Monica College Andrew S. Baldwin, Mesa Community College Stephen Baron, Bridgewater College Paul W. Bates, University of Minnesota, Duluth Janet Batzli, University of Wisconsin, Madison

David Baum, University of Wisconsin, Madison Kevin S. Beach, The University of Tampa Philip Becraft, Iowa State University Alexandra Bely, University of Maryland Lauryn Benedict, University of Northern Colorado Anne Bergey, Truman State University Joydeep Bhattacharjee, University of Louisiana, Monroe Todd Bishop, Dalhousie University Catherine Black, Idaho State University Andrew R. Blaustein, Oregon State University James Bolton, Georgia Gwinnett College Jim Bonacum, University of Illinois at Springfield Laurie J. Bonneau, Trinity College James Bottesch, Eastern Florida State College Lisa Boucher, The University of Texas at Austin Nicole Bournias-Vardiabasis, California State University, San Bernardino Nancy Boury, Iowa State University Matthew Brewer, Georgia State University Christoper G. Brown, Georgia Gwinnett College Jill Buettner, Richland College Sharon K. Bullock, University of North Carolina at Charlotte Lisa Burgess, Broward College Jorge Busciglio, University of California, Irvine Stephen Bush, Coastal Carolina University

David Byres, Florida State College at Jacksonville Gloria Caddell, University of Central Oklahoma Guy A. Caldwell, The University of Alabama Kim A. Caldwell, The University of Alabama John S. Campbell, Northwest College Jennifer Capers, Indian River State College Joel Carlin, Gustavus Adolphus College Sara G. Carlson, University of Akron Dale Casamatta, University of North Florida Merri Lynn Casem, California State University, Fullerton Anne Casper, Eastern Michigan University David Champlin, University of Southern Maine Rebekah Chapman, Georgia State University P. Bryant Chase, Florida State University Thomas T. Chen, Santa Monica College Young Cho, Eastern New Mexico University Sunita Chowrira, University of British Columbia Tim W. Christensen, East Carolina University Steven Clark, University of Michigan Beth Cliffel, Triton College Liane Cochran-Stafira, Saint Xavier University John G. Cogan, The Ohio State University Reid Compton, University of Maryland Ronald H. Cooper, University of California, Los Angeles

Janice Countaway, University of Central Oklahoma Joseph A. Covi, University of North Carolina at Wilmington Will Crampton, University of Central Florida Kathryn Craven, Armstrong State University Lorelei Crerar, George Mason University Kerry Cresawn, James Madison University Richard J. Cristiano, Houston **Community College Northwest** Cynthia K. Damer, Central Michigan University David Dansereau, Saint Mary's University Mark Davis, Macalester College Elizabeth A. De Stasio, Lawrence University Tracy Deem, Bridgewater College Kimberley Dej, McMaster University Terrence Delaney, University of Vermont Tracie Delgado, Northwest University Mark S. Demarest, University of North Texas D. Michael Denbow, Virginia Polytechnic Institute and State University Jonathan Dennis, Florida State University Brandon S. Diamond, University of Miami AnnMarie DiLorenzo, Montclair State University Frank J. Dirrigl, Jr., University of Texas, Pan American Christine Donmoyer, Allegheny College Samuel Douglas, Angelina College John D. DuBois, Middle Tennessee State University Janet Duerr, Ohio University

Meghan Duffy, University of Michigan Richard E. Duhrkopf, Baylor University Jacquelyn Duke, Baylor University Kamal Dulai, University of California, Merced Rebecca K. Dunn, Boston College Jacob Egge, Pacific Lutheran University Kurt J. Elliott, Northwest Vista College Miles Dean Engell, North Carolina State University Susan Erster, Stony Brook University Barbara I. Evans, Lake Superior State University Lisa Felzien, Rockhurst University Ralph Feuer, San Diego State University Ginger R. Fisher, University of Northern Colorado John Flaspohler, Concordia College Sam Flaxman, University of Colorado, Boulder Nancy Flood, Thompson Rivers University Arthur Frampton, University of North Carolina at Wilmington Caitlin Gabor, Texas State University Tracy Galarowicz, Central Michigan University Raul Galvan, South Texas College Deborah Garrity, Colorado State University Jason Mitchell Gee, East Carolina University T.M. Gehring, Central Michigan University John Geiser, Western Michigan University

Carol A. Gibbons Kroeker, Ambrose University Susan A. Gibson, South Dakota State University Cynthia J. Giffen, University of Michigan Matthew Gilg, University of North Florida Sharon L. Gillies, University of the Fraser Valley Leslie Goertzen, Auburn University Marla Gomez, Nicholls State University Steven Gorsich, Central Michigan University Daniel Graetzer, Northwest University James Grant, Concordia University Linda E. Green, Georgia Institute ofTechnology Sara Gremillion, Armstrong State University Ann Grens, Indiana University, South Bend John L. Griffis, Joliet Junior College Nancy A. Guild, University of Colorado, Boulder Lonnie Guralnick, Roger Williams University Valerie K. Haftel, Morehouse College Margaret Hanes, Eastern Michigan University Sally E. Harmych, University of Toledo Sherry Harrel, Eastern Kentucky University J. Scott Harrison, Georgia Southern University Pat Harrison, University of the Fraser Valley Diane Hartman, Baylor University Wayne Hatch, Utah State University Eastern

David Haymer, University of Hawaii at Manoa Chris Haynes, Shelton State Community College Christiane Healey, University of Massachusetts, Amherst David Hearn, Towson University Marshal Hedin, San Diego State University Triscia Hendrickson, Morehouse College Albert A. Herrera, University of Southern California Bradley Hersh, Allegheny College Anna Hiatt, East Tennessee State University Laura Hill, University of Vermont Jay Hodgson, Armstrong State University James Horwitz, Palm Beach State College Sarah Hosch, Oakland University Kelly Howe, University of New Mexico Kimberly Hruska, Langara College William Huddleston, University of Calgary Carol Hurney, James Madison University Brian A. Hyatt, Bethel University Bradley C. Hyman, University of California, Riverside Anne Jacobs, Allegheny College Robert C. Jadin, Northeastern Illinois University Rick Jellen, Brigham Young University Dianne Jennings, Virginia Commonwealth University L. Scott Johnson, Towson University Russell Johnson, Colby College Susan Jorstad, University of Arizona Matthew Julius, St. Cloud State University

John S. K. Kauwe, Brigham Young University Lori J. Kayes, Oregon State University Todd Kelson, Brigham Young University, Idaho Christopher Kennedy, Simon Fraser University Jacob Kerby, University of South Dakota Stephen T. Kilpatrick, University of Pittsburgh, Johnstown Mary Kimble, Northeastern Illinois University Denice D. King, Cleveland State Community College David Kittlesen, University of Virginia Ann Kleinschmidt, Allegheny College Kathryn Kleppinger-Sparace, Tri-County Technical College Daniel Klionsky, University of Michigan Ned Knight, Reed College Benedict Kolber, Duquesne University Ross Koning, Eastern Connecticut State University John Koontz, The University of Tennessee, Knoxville Peter Kourtev, Central Michigan University Elizabeth Kovar, The University of Chicago Nadine Kriska, University of Wisconsin, Whitewater Tim L. Kroft, Auburn University at Montgomery William Kroll, Loyola University of Chicago Dave Kubien, University of New Brunswick Jason Kuehner, Emmanuel College Josephine Kurdziel, University of Michigan

Troy A. Ladine, East Texas Baptist University Diane M. Lahaise, Georgia Perimeter College Janice Lai, Austin Community College, Cypress Creek Kirk Land, University of the Pacific James Langeland, Kalamazoo College Neva Laurie-Berry, Pacific Lutheran University Brenda Leady, University of Toledo Adrienne Lee, University of California, Fullerton Chris Levesque, John Abbott College Bai-Lian Larry Li, University of California, Riverside Cynthia Littlejohn, University of Southern Mississippi Jason Locklin, Temple College Xu Lu, University of Findlay Patrice Ludwig, James Madison University Ford Lux, Metropolitan State University of Denver Morris F. Maduro, University of California, Riverside C. Smoot Major, University of South Alabama Barry Margulies, Towson University Nilo Marin, Broward College Michael Martin, John Carroll University Heather D. Masonjones, University of Tampa Scott C. Mateer, Armstrong State University Robert Maxwell, Georgia State University Joseph McCormick, Duquesne University Lori L. McGrew, Belmont University

Peter B. McIntyre, University of Wisconsin, Madison Iain McKinnell, Carleton University Krystle McLaughlin, Lehigh University Susan B. McRae, East Carolina University Mark Meade, Jacksonville State University **Richard Merritt**, Houston **Community College Northwest** James E. Mickle, North Carolina State University Chad Montgomery, Truman State University Scott M. Moody, Ohio University Daniel Moon, University of North Florida Jamie Moon, University of North Florida Jonathan Moore, Virginia Commonwealth University Paul A. Moore, Bowling Green State University Tsafrir Mor, Arizona State University Jeanelle Morgan, University of North Georgia Mark Mort, University of Kansas Anthony Moss, Auburn University Karen Neal, Reynolds Community College Kimberlyn Nelson, Pennsylvania State University Hao Nguyen, California State University, Sacramento John Niedzwiecki, Belmont University Alexey G. Nikitin, Grand Valley State University Matthew Nusnbaum, Georgia State University Robert Okazaki, Weber State University Tiffany Oliver, Spelman College

Jennifer S. O'Neil, Houston Community College Kavita Oommen, Georgia State University Nathan Opolot Okia, Auburn University at Montgomery Robin O'Quinn, Eastern Washington University Sarah A. Orlofske, Northeastern Illinois University Don Padgett, Bridgewater State University Lisa Parks, North Carolina State University Nilay Patel, California State University, Fullerton Markus Pauly, University of California, Berkeley Daniel M. Pavuk, Bowling Green State University Marc Perkins, Orange Coast College Beverly Perry, Houston **Community College** John S. Peters, College of Charleston Chris Petrie, Eastern Florida State College John M. Pleasants, Iowa State University Michael Plotkin, Mt. San Jacinto College Mary Poffenroth, San Jose State University Dan Porter, Amarillo College Sonja Pyott, University of North Carolina at Wilmington Mirwais Qaderi, Mount Saint Vincent University Nick Reeves, Mt. San Jacinto College Adam J. Reinhart, Wayland **Baptist University** Stephanie Richards, Bates College David A. Rintoul, Kansas State University

Trevor Rivers, University of Kansas Laurel Roberts, University of Pittsburgh Casey Roehrig, Harvard University Jennifer Rose, University of North Georgia Michael S. Rosenzweig, Virginia Polytechnic Institute and State University Caleb M. Rounds, University of Massachusetts, Amherst Yelena Rudayeva, Palm Beach State College James E. Russell, Georgia **Gwinnett** College Donald Sakaguchi, Iowa State University Thomas Sasek, University of Louisiana at Monroe Leslie J. Saucedo, University of **Puget Sound** Udo M. Savalli, Arizona State University West Campus Smita Savant, Houston **Community College Southwest** Leena Sawant, Houston **Community College Southwest** H. Jochen Schenk, California State University, Fullerton Aaron E. Schirmer, Northeastern Illinois University Mark Schlueter, Georgia **Gwinnett** College Gregory Schmaltz, University of the Fraser Valley Jennifer Schramm, Chemeketa **Community College** Roxann Schroeder, Humboldt State University Tim Schuh, St. Cloud State University Kevin G. E. Scott, University of Manitoba Erik P. Scully, Towson University Sarah B. Selke, Three Rivers **Community College**

Pramila Sen, Houston **Community College** Anupama Seshan, Emmanuel College Alice Sessions, Austin **Community College** Vijay Setaluri, University of Wisconsin Timothy E. Shannon, Francis Marion University Wallace Sharif, Morehouse College Mark Sherrard, University of Northern Iowa Cara Shillington, Eastern Michigan University Amy Siegesmund, Pacific Lutheran University Christine Simmons, Southern Illinois University, Edwardsville S. D. Sipes, Southern Illinois University, Carbondale John Skillman, California State University, San Bernardino Daryl Smith, Langara College Julie Smith, Pacific Lutheran University Karen Smith, University of British Columbia Leo Smith, University of Kansas Ramona Smith-Burrell, Eastern Florida State College Joel Snodgrass, Towson University Alan J. Snow, University of Akron-Wayne College Judith Solti, Houston Community College, Spring Branch Ann Song, University of California, Fullerton C. Kay Song, Georgia State University Chrissy Spencer, Georgia Institute ofTechnology **Rachel Spicer, Connecticut** College Ashley Spring, Eastern Florida State College

Bruce Stallsmith, The University of Alabama in Huntsville Maria L. Stanko, New Jersey Institute of Technology Nancy Staub, Gonzaga University Barbara Stegenga, University of North Carolina Robert Steven, University of Toledo Lori Stevens, University of Vermont Mark Sturtevant, Oakland University Elizabeth B. Sudduth, Georgia **Gwinnett** College Mark Sugalski, Kennesaw State University, Southern Polytechnic State University Fengjie Sun, Georgia Gwinnett College Bradley J. Swanson, Central Michigan University Brook O. Swanson, Gonzaga University Ken Gunter Sweat, Arizona State University West Campus Annette Tavares, University of Ontario Institute of Technology William R. Taylor, University of Toledo Samantha Terris Parks, Georgia State University Jessica Theodor, University of Calgary Sharon Thoma, University of Wisconsin, Madison Sue Thomson, Auburn University at Montgomery Mark Tiemeier, Cincinnati State Technical and Community College Candace Timpte, Georgia **Gwinnett** College Nicholas Tippery, University of Wisconsin, Whitewater

Chris Todd, University of Saskatchewan Kurt A. Toenjes, Montana State University, Billings Jeffrey L. Travis, The University at Albany, The State University of New York Stephen J. Trumble, Baylor University Jan Trybula, The State University of New York at Potsdam Cathy Tugmon, Georgia Regents University Alexa Tullis, University of Puget Sound Marsha Turell, Houston **Community College** Pat Uelmen Huey, Georgia **Gwinnett** College Steven M. Uyeda, Pima **Community College** Rani Vajravelu, University of Central Florida Moira van Staaden, Bowling Green State University Dirk Vanderklein, Montclair State University

William Velhagen, Caldwell University Sara Via, University of Maryland Christopher Vitek, University of Texas, Pan American Neal J. Voelz, St. Cloud State University Mindy Walker, Rockhurst University Andrea Ward, Adelphi University Jennifer Ward, University of North Carolina at Asheville Pauline Ward, Houston Community College Alan Wasmoen, Metropolitan Community College Elizabeth R. Waters, San Diego State University Matthew Weand, Southern **Polytechnic State** University K. Derek Weber, Raritan Valley **Community College** Andrea Weeks, George Mason University

Charles Welsh, Duquesne University Naomi L. B. Wernick, University of Massachusetts, Lowell Mary E. White, Southeastern Louisiana University David Wilkes, Indiana University, South Bend Frank Williams, Langara College Kathy S. Williams, San Diego State University Lisa D. Williams, Northern Virginia Community College Christina Wills, Rockhurst University Brian Wisenden, Minnesota State University, Moorhead David Wolfe, American River College Ramakrishna Wusirika, Michigan Technological University G. Wyngaard, James Madison University James R. Yount, Eastern Florida State College Min Zhong, Auburn University

BIOLOGY HOW LIFE WORKS

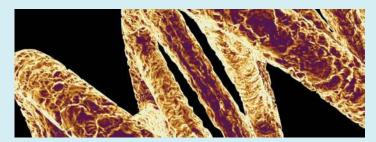
CONTENTS

vi
viii
xxiii

FROM CELLS TO ORGANISMS PART 1

CHAPTER 1	LIFE	
Chemical, Cel	lular, and Evolutionary Foundations	3

1.1	The Scientific Method	4
	Observation allows us to draw tentative explanations called hypotheses.	4
	A hypothesis makes predictions that can be tested by observation and experiments.	5
	General explanations of natural phenomena supported by many experiments and observations are called theories.	6
	HOW DO WE KNOW? What caused the extinction of the dinosaurs?	7
1.2	Chemical and Physical Principles	8
	The living and nonliving worlds share the same chemical foundations and obey the same physical laws.	8
	The scientific method shows that living organisms come from other living organisms.	10
	HOW DO WE KNOW? Can living organisms arise from nonliving matter?	10
	HOW DO WE KNOW? Can microscopic life arise from nonliving matter?	11
1.3	The Cell	12
	Nucleic acids store and transmit information needed for growth, function, and reproduction.	12
	Membranes define cells and spaces within cells.	14
	Metabolism converts energy from the environment into a form that can be used by cells.	14
	A virus is genetic material in need of a cell.	15
1.4	Evolution	15
	Variation in populations provides the raw material for evolution.	15


Evolution predicts a nested pattern of	relatedness among	
species, depicted as a tree.	16	
Evolution can be studied by means of e	experiments. 17	
HOW DO WE KNOW? Can evolution b laboratory?	e demonstrated in the 18	
1.5 Ecological Systems	19	
Basic features of anatomy, physiology, ecological systems.	and behavior shape 19	
Ecological interactions play an importa	int role in evolution. 20	
1.6 The Human Footprint	20	
CASE1 The First Cell: Life's Origins	25	

CHAPTER 2 THE MOLECULES OF LIFE

	Proteins are composed of amino acids.	40
	Nucleic acids encode genetic information in their nucleotide sequence.	40
	Complex carbohydrates are made up of simple sugars.	42
	Lipids are hydrophobic molecules.	43
?	2.6 How Did the Molecules of Life Form?	45
	The building blocks of life can be generated in the laboratory.	45
	HOW DO WE KNOW? Could the building blocks of organic molecules have been generated on the early Earth?	46
	Experiments show how life's building blocks can form macromolecules.	46

CHAPTER 3 NUCLEIC ACIDS AND TRANSCRIPTION

3.1	Major Biological Functions of DNA	50
	DNA can transfer biological characteristics from one organism to another.	50
	HOW DO WE KNOW? What is the nature of the genetic material?	51
	DNA molecules are copied in the process of replication.	51
	Genetic information flows from DNA to RNA to protein.	51
	HOW DO WE KNOW? What is the nature of the genetic material?	52
3.2	Chemical Composition and Structure of DNA	53
	A DNA strand consists of subunits called nucleotides.	53
	DNA is a linear polymer of nucleotides linked by phosphodiester bonds.	5∠
	Cellular DNA molecules take the form of a double helix.	55
	The three-dimensional structure of DNA gave important clues about its functions.	56
	Cellular DNA is coiled and packaged with proteins.	58
3.3	Retrieval of Genetic Information Stored in DNA: Transcription	58
?	What was the first nucleic acid molecule, and how did it arise?	59
	RNA is a polymer of nucleotides in which the 5-carbon sugar is ribose.	59
	In transcription, DNA is used as a template to make complementary RNA.	60
	Transcription starts at a promoter and ends at a terminator.	60
	RNA polymerase adds successive nucleotides to the 3' end of the transcript.	62

	The RNA polymerase complex is a molecular machine that opens, transcribes, and closes duplex DNA.	63
3.4	Fate of the RNA Primary Transcript	63
	Messenger RNA carries information for the synthesis of a specific protein.	63
	Primary transcripts in eukaryotes undergo several types of chemical modification.	64
	Some RNA transcripts are processed differently from protein- coding transcripts and have functions of their own.	65

CHAPTER 4 TRANSLATION AND PROTEIN STRUCTURE 69

4.1	Molecular Structure of Proteins	70
	Amino acids differ in their side chains.	71
	Successive amino acids in proteins are connected by peptide bonds.	72
	The sequence of amino acids dictates protein folding, which determines function.	73
	Secondary structures result from hydrogen bonding in the polypeptide backbone.	73
	HOW DO WE KNOW? What are the shapes of proteins?	74
	Tertiary structures result from interactions between amino acid side chains.	75
	Polypeptide subunits can come together to form quaternary structures.	76
	Chaperones help some proteins fold properly.	76
4.2	Translation: How Proteins Are Synthesized	77
	Translation uses many molecules found in all cells.	77
	The genetic code shows the correspondence between codons and amino acids.	79
	HOW DO WE KNOW? How was the genetic code deciphered?	80
	Translation consists of initiation, elongation, and termination.	81
?	How did the genetic code originate?	83
	VISUAL SYNTHESIS Gene Expression	84
4.3	Protein Evolution and the Origin of New Proteins	86
	Most proteins are composed of modular folding domains.	86
	Amino acid sequences evolve through mutation and selection.	86

CHAPTER 5 ORGANIZING PRINCIPLES

Lipids, Membranes, and Cell Compartments

5.1 Structure of Cell Membranes 90 Cell membranes are composed of two layers of lipids. 90 ? How did the first cell membranes form? 91 Cell membranes are dynamic. 92 Proteins associate with cell membranes in different ways. 93 5.2 The Plasma Membrane and Cell Wall 94 HOW DO WE KNOW? Do proteins move in the plane of the membrane? 95 The plasma membrane maintains homeostasis. 96 Passive transport involves diffusion. 96 Primary active transport uses the energy of ATP. 97 Secondary active transport is driven by an electrochemical gradient. 98 Many cells maintain size and composition using active 99 transport. The cell wall provides another means of maintaining cell 100 shape. 5.3 The Internal Organization of Cells 100 101 Eukaryotes and prokaryotes differ in internal organization. Prokaryotic cells lack a nucleus and extensive internal 101 compartmentalization. Eukaryotic cells have a nucleus and specialized internal structures. 101 104 5.4 The Endomembrane System The endomembrane system compartmentalizes the cell. 104 The nucleus houses the genome and is the site of RNA 105 synthesis. The endoplasmic reticulum is involved in protein and lipid 105 synthesis. The Golgi apparatus modifies and sorts proteins and lipids. 105 Lysosomes degrade macromolecules. 107 Protein sorting directs proteins to their proper location in or 108 out of the cell. 111 5.5 **Mitochondria and Chloroplasts**

Mitochondria provide the eukaryotic cell with most of its	
usable energy.	111
Chloroplasts capture energy from sunlight.	111

CHAPTER 6 **MAKING LIFE WORK** Capturing and Using Energy

89

6.1	An Overview of Metabolism	116
	Organisms can be classified according to their energy and carbon sources.	116
	Metabolism is the set of chemical reactions that sustain life.	117
6.2	Kinetic and Potential Energy	118
	Kinetic and energy potential energy are two forms of energy.	118
	Chemical energy is a form of potential energy.	118
	ATP is a readily accessible form of cellular energy.	119
6.3	The Laws of Thermodynamics	119
	The first law of thermodynamics: Energy is conserved.	119
	The second law of thermodynamics: Energy transformation always results in an increase of disorder in the universe.	119
6.4	Chemical Reactions	120
	A chemical reaction occurs when molecules interact.	120
	The laws of thermodynamics determine whether a chemical reaction requires or releases energy available to do work.	121
	The hydrolysis of ATP releases energy.	122
	Non-spontaneous reactions are often coupled to spontaneous reactions.	123
6.5	Enzymes and the Rate of Chemical Reactions	124
	Enzymes reduce the activation energy of a chemical reaction.	124
	Enzymes form a complex with reactants and products.	125
	Enzymes are highly specific.	126
	HOW DO WE KNOW? Do enzymes form complexes with substrates?	126
	Enzyme activity can be influenced by inhibitors and activators.	127
	Allosteric enzymes regulate key metabolic pathways.	127
?	What naturally occurring elements might have spurred the first reactions that led to life?	128

CHAPTER 7 CELLULAR RESPIRATION

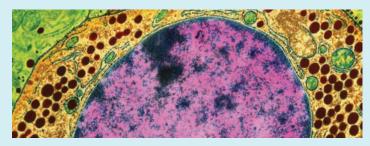
Harvesting Energy from Carbohydrates and Other Fuel Molecules 131

7.1	An Overview of Cellular Respiration	132
	Cellular respiration uses chemical energy stored in molecules such as carbohydrates and lipids to provide ATP.	132
	ATP is generated by substrate-level phosphorylation and oxidative phosphorylation.	133
	Redox reactions play a central role in cellular respiration.	133
	Cellular respiration occurs in four stages.	135
7.2	Glycolysis: The Splitting of Sugar	135
	Glycolysis is the partial breakdown of glucose.	137
7.3	Pyruvate Oxidation	137
	The oxidation of pyruvate connects glycolysis to the citric acid cycle.	137
7.4	The Citric Acid Cycle	138
	The citric acid cycle produces ATP and reduced electron carriers.	138
?	What were the earliest energy-harnessing reactions?	139
7.5	The Electron Transport Chain and Oxidative Phosphorylation	140
	The electron transport chain transfers electrons and pumps protons.	140
	The proton gradient is a source of potential energy.	142
	ATP synthase converts the energy of the proton gradient into the energy of ATP.	142
	HOW DO WE KNOW? Can a proton gradient drive the synthesis of ATP?	143
7.6	Anaerobic Metabolism and the Evolution of Cellular Respiration	144
	Fermentation extracts energy from glucose in the absence of oxygen.	145
?	How did early cells meet their energy requirements?	146
7.7	Metabolic Integration	147
	Excess glucose is stored as glycogen in animals and starch in plants.	147
	Sugars other than glucose contribute to glycolysis.	147

Fatty acids and proteins are useful sources of energy.	148
The intracellular level of ATP is a key regulator of cellular respiration.	149
Exercise requires several types of fuel molecules and the coordination of metabolic pathways.	150

CHAPTER 8 **PHOTOSYNTHESIS**

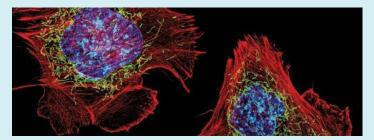
Using Sunlight to Build Carbohydrates



8.1	Photosynthesis: An Overview	154
	Photosynthesis is widely distributed.	154
	Photosynthesis is a redox reaction.	155
	The photosynthetic electron transport chain takes place on specialized membranes.	155
	HOW DO WE KNOW? Does the oxygen released by photosynthesis come from H_2O or CO_2 ?	156
8.2	The Calvin Cycle	157
	The incorporation of CO_2 is catalyzed by the enzyme rubisco.	157
	NADPH is the reducing agent of the Calvin cycle.	158
	The regeneration of RuBP requires ATP.	158
	The steps of the Calvin cycle were determined using radioactive CO ₂ .	158
	Carbohydrates are stored in the form of starch.	158
	HOW DO WE KNOW? How is CO ₂ used to synthesize carbohydrates?	159
8.3	Capturing Sunlight into Chemical Forms	160
	Chlorophyll is the major entry point for light energy in photosynthesis.	160
	Photosystems use light energy to drive the photosynthetic electron transport chain.	161
	The photosynthetic electron transport chain connects two photosystems.	162
	HOW DO WE KNOW? Do chlorophyll molecules operate on their own or in groups?	163
	The accumulation of protons in the thylakoid lumen drives the synthesis of ATP.	164
	Cyclic electron transport increases the production of ATP.	166
8.4	Challenges to Photosynthetic Efficiency	166

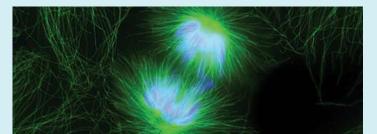
	Excess light energy can cause damage.	166
	Photorespiration leads to a net loss of energy and carbon.	168
	Photosynthesis captures just a small percentage of incoming solar energy.	169
8.5	The Evolution of Photosynthesis	170
?	How did early cells use sunlight to meet their energy requirements?	170
	The ability to use water as an electron donor in photosynthesis evolved in cyanobacteria.	170
	Eukaryotic organisms are believed to have gained photosynthesis by endosymbiosis.	171
	VISUAL SYNTHESIS Harnessing Energy: Photosynthesis and Cellular Respiration	172
? C	ASE 2 Cancer: When Good Cells Go Bad	176

CHAPTER 9 CELL SIGNALING


179

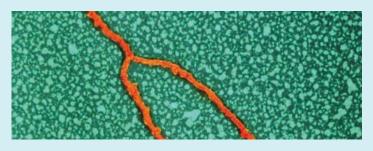
9.1	Principles of Cell Communication	180
	Cells communicate using chemical signals that bind to specific receptors.	180
	Signaling involves receptor activation, signal transduction, response, and termination.	181
9.2	Cell Signaling over Long and Short Distances	182
	Endocrine signaling acts over long distances.	183
	Signaling can occur over short distances.	183
	HOW DO WE KNOW? Where do growth factors come from?	184
	Signaling can occur by direct cell-cell contact.	184
9.3	Cell-Surface and Intracellular Receptors	185
	Receptors for polar signaling molecules are on the cell surface.	185
	Receptors for nonpolar signaling molecules are in the interior of the cell.	186
	Cell-surface receptors act like molecular switches.	186
9.4	G Protein-Coupled Receptors and Short-Term Responses	187
	The first step in cell signaling is receptor activation.	187
	Signals are often amplified in the cytosol.	188
	Signals lead to a cellular response.	188
	Signaling pathways are eventually terminated.	190

Receptor Kinases and Long-Term Responses	191
Receptor kinases phosphorylate each other, activate intercellular signaling pathways, lead to a response, and	
are terminated.	192
How do cell signaling errors lead to cancer?	192
Signaling pathways are integrated to produce a response in a cell.	193
	Receptor kinases phosphorylate each other, activate intercellular signaling pathways, lead to a response, and are terminated. How do cell signaling errors lead to cancer? Signaling pathways are integrated to produce a response


CHAPTER 10 CELL AND TISSUE ARCHITECTURE

10.1	Tissues and Organs	198
	Tissues and organs are communities of cells.	198
	The structure of skin relates to its function.	199
10.2	The Cytoskeleton	200
	Microtubules and microfilaments are polymers of protein subunits.	200
	Microtubules and microfilaments are dynamic structures.	201
	Motor proteins associate with microtubules and micro- filaments to cause movement.	202
	Intermediate filaments are polymers of proteins that vary according to cell type.	204
	The cytoskeleton is an ancient feature of cells.	205
10.3	Cell Junctions	206
	Cell adhesion molecules allow cells to attach to other cells and to the extracellular matrix.	206
	Anchoring junctions connect adjacent cells and are reinforced by the cytoskeleton.	207
	Tight junctions prevent the movement of substances through the space between cells.	208
	Communicating junctions allow the passage of molecules between cells.	210
10.4	The Extracellular Matrix	210
	The extracellular matrix of plants is the cell wall.	211
	The extracellular matrix is abundant in connective tissues of animals.	212
?	How do cancer cells spread throughout the body?	213
	Extracellular matrix proteins influence cell shape and gene expression.	214
	HOW DO WE KNOW? Can extracellular matrix proteins influence gene expression?	215

CHAPTER 11 CELL DIVISION


Variations, Regulation, and Cancer

11.1	Cell Division	220
	Prokaryotic cells reproduce by binary fission.	220
	Eukaryotic cells reproduce by mitotic cell division.	221
	The cell cycle describes the life cycle of a eukaryotic cell.	221
11.2	Mitotic Cell Division	222
	The DNA of eukaryotic cells is organized as chromosomes.	222
	Prophase: Chromosomes condense and become visible.	223
	Prometaphase: Chromosomes attach to the mitotic spindle.	224
	Metaphase: Chromosomes align as a result of dynamic changes in the mitotic spindle.	224
	Anaphase: Sister chromatids fully separate.	224
	Telophase: Nuclear envelopes re-form around newly	225
	segregated chromosomes.	225
	The parent cell divides into two daughter cells by cytokinesis.	225
11.3	Meiotic Cell Division	226
	Pairing of homologous chromosomes is unique to meiosis.	226
	Crossing over between DNA molecules results in exchange of genetic material.	227
	The first meiotic division brings about the reduction in chromosome number.	227
	The second meiotic division resembles mitosis.	228
	Division of the cytoplasm often differs between the sexes.	231
	Meiosis is the basis of sexual reproduction.	231
11.4	Regulation of the Cell Cycle	233
	Protein phosphorylation controls passage through the cell cycle.	233
	HOW DO WE KNOW? How is progression through the cell cycle controlled?	234
	Different cyclin-CDK complexes regulate each stage of the cell cycle.	235
	Cell cycle progression requires successful passage through multiple checkpoints.	235
?	11.5 What Genes Are Involved in Cancer?	236
	Oncogenes promote cancer.	236
	HOW DO WE KNOW? Can a virus cause cancer?	237
	Proto-oncogenes are genes that when mutated may cause cancer.	238

	Tumor suppressors block specific steps in the development		
	of cancer.	238	
	Most cancers require the accumulation of multiple mutations.	238	
	VISUAL SYNTHESIS Cellular Communities	240	
?	CASE 3 You, from A to T: Your Personal Genome	244	

CHAPTER 12 DNA REPLICATION AND MANIPULATION 247

12.1	DNA Replication	248
	During DNA replication, the parental strands separate and new partners are made.	248
	HOW DO WE KNOW? How is DNA replicated?	249
	New DNA strands grow by the addition of nucleotides to the 3' end.	250
	In replicating DNA, one daughter strand is synthesized continuously and the other in a series of short pieces.	251
	A small stretch of RNA is needed to begin synthesis of a new DNA strand.	252
	Synthesis of the leading and lagging strands is coordinated.	252
	DNA polymerase is self-correcting because of its proof- reading function.	254
12.2	Replication of Chromosomes	254
	Replication of DNA in chromosomes starts at many places almost simultaneously.	254
	Telomerase restores tips of linear chromosomes shortened during DNA replication.	255
12.3	Isolation, Identification, and Sequencing of DNA Fragments	257
	The polymerase chain reaction selectively amplifies regions of DNA.	257
	Electrophoresis separates DNA fragments by size.	259
	Restriction enzymes cleave DNA at particular short sequences.	260
	DNA strands can be separated and brought back together again.	261
	DNA sequencing makes use of the principles of DNA replication.	263
?	What new technologies are being developed to sequence your personal genome?	264
12.4	Genetic Engineering	264

Recombinant DNA combines DNA molecules from two or	
more sources.	264
Recombinant DNA is the basis of genetically modified	
organisms.	266
DNA editing can be used to alter gene sequences almost at will.	267

CHAPTER 13 GENOMES

13.1	Genome Sequencing	272
	HOW DO WE KNOW? How are whole genomes sequenced?	272
	Complete genome sequences are assembled from smaller pieces.	272
	Sequences that are repeated complicate sequence assembly.	273
?	Why sequence your personal genome?	274
13.2	Genome Annotation	275
	Genome annotation identifies various types of sequence.	275
	Genome annotation includes searching for sequence motifs.	276
	Comparison of genomic DNA with messenger RNA reveals the intron–exon structure of genes.	276
	An annotated genome summarizes knowledge, guides research, and reveals evolutionary relationships among organisms.	277
	The HIV genome illustrates the utility of genome annotation and comparison.	277
13.3	Gene Number, Genome Size, and Organismal Complexity	278
	Gene number is not a good predictor of biological complexity.	278
	Viruses, bacteria, and archaeons have small, compact genomes.	279
	Among eukaryotes, there is no relationship between genome size and organismal complexity.	279
	About half of the human genome consists of transposable elements and other types of repetitive DNA.	280
13.4	Organization of Genomes	281
	Bacterial cells package their DNA as a nucleoid composed of many loops.	281
	Eukaryotic cells package their DNA as one molecule per chromosome.	282
	The human genome consists of 22 pairs of chromosomes and two sex chromosomes.	282

Organelle DNA forms nucleoids that differ from those in bacteria.

3.5	Viruses and Viral Genomes	285
	Viruses can be classified by their genomes.	286
	The host range of a virus is determined by viral and host	
	surface proteins.	287
	Viruses have diverse sizes and shapes.	287
	Viruses are capable of self-assembly.	288

CHAPTER 14 MUTATION AND DNA REPAIR

14.1	The Rate and Nature of Mutations	292
	For individual nucleotides, mutation is a rare event.	292
	Across the genome as a whole, mutation is common.	293
	Only germ-line mutations are transmitted to progeny.	293
?	What can your personal genome tell you about your genetic risk factors?	294
	Mutations are random with regard to an organism's needs.	295
	HOW DO WE KNOW? Do mutations occur randomly, or are they directed by the environment?	296
14.2	Small-Scale Mutations	297
	Point mutations are changes in a single nucleotide.	297
	Small insertions and deletions involve several nucleotides.	298
	Some mutations are due to the insertion of a transposable element.	300
	HOW DO WE KNOW? What causes sectoring in corn kernels?	300
14.3	Chromosomal Mutations	301
	Duplications and deletions result in gain or loss of DNA.	301
	Gene families arise from gene duplication and evolutionary divergence.	302
	An inversion has a chromosomal region reversed in orientation.	303
	A reciprocal translocation joins segments from nonhomologous chromosomes.	303
14.4	DNA Damage and Repair	303
	DNA damage can affect both DNA backbone and bases.	303
	Most DNA damage is corrected by specialized repair	
	enzymes.	304

CHAPTER 15 GENETIC VARIATION

309

325

326

15.1	Genotype and Phenotype	310
	Genotype is the genetic makeup of a cell or organism; phenotype is its observed characteristics.	310
	The effect of a genotype often depends on several factors.	310
	Some genetic differences are major risk factors for disease.	311
	Not all genetic differences are harmful.	312
	A few genetic differences are beneficial.	313
15.2	Genetic Variation and Individual Uniqueness	314
	Areas of the genome with variable numbers of tandem repeats are useful in DNA typing.	314
	Some polymorphisms add or remove restriction sites in the DNA.	315
15.3	Genomewide Studies of Genetic Variation	316
	Single-nucleotide polymorphisms (SNPs) are single-base changes in the genome.	316
?	How can genetic risk factors be detected?	317
	Copy-number variation constitutes a significant proportion of genetic variation.	318
15.4	Genetic Variation in Chromosomes	318
	Nondisjunction in meiosis results in extra or missing chromosomes.	319
	Some human disorders result from nondisjunction.	319
	HOW DO WE KNOW? What is the genetic basis of Down syndrome?	320
	Extra or missing sex chromosomes have fewer effects than extra autosomes.	320
	Nondisjunction is a major cause of spontaneous abortion.	322

CHAPTER 16 MENDELIAN INHERITANCE

16.1 Early Theories of Inheritance

Early theories of heredity predicted the transmission of acquired characteristics. 326 Belief in blending inheritance discouraged studies of hereditary transmission. 326 16.2 The Foundations of Modern Transmission Genetics 327 327 Mendel's experimental organism was the garden pea. In crosses, one of the traits was dominant in the offspring. 328 16.3 Segregation: Mendel's Key Discovery 330 Genes come in pairs that segregate in the formation of reproductive cells. 330 The principle of segregation was tested by predicting the outcome of crosses. 331 A testcross is a mating to an individual with the homozygous recessive genotype. 332 Segregation of alleles reflects the separation of chromosomes in meiosis. 332 Dominance is not universally observed. 332 The principles of transmission genetics are statistical and stated in terms of probabilities. 333 334 Mendelian segregation preserves genetic variation. 16.4 Independent Assortment 335 Independent assortment is observed when genes segregate independently of one another. 335 HOW DO WE KNOW? How are single-gene traits inherited? 336 Independent assortment reflects the random alignment of chromosomes in meiosis. 337 Phenotypic ratios can be modified by interactions between genes. 338 16.5 Patterns of Inheritance Observed in Family Histories 339 Dominant traits appear in every generation. 339 Recessive traits skip generations. 340

 Many genes have multiple alleles.
 340

 Incomplete penetrance and variable expression can obscure inheritance patterns.
 341

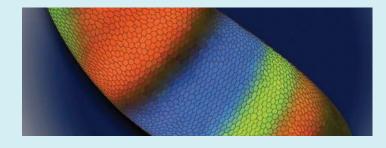
 ? How do genetic tests identify disease risk factors?
 342

CHAPTER 17 INHERITANCE OF SEX CHROMOSOMES, LINKED GENES, AND ORGANELLES

17.1 The X and Y Sex Chromosomes

346

	In many animals, sex is genetically determined and associated with chromosomal differences.	346
	Segregation of the sex chromosomes predicts a 1:1 ratio of females to males.	347
17.2	Inheritance of Genes in the X Chromosome	348
	X-linked inheritance was discovered through studies of male fruit flies with white eyes.	348
	Genes in the X chromosome exhibit a "crisscross" inheritance pattern.	348
	X-linkage provided the first experimental evidence that genes are in chromosomes.	350
	Genes in the <i>X</i> chromosome show characteristic patterns in human pedigrees.	351
17.3	Genetic Linkage and Recombination	353
	Nearby genes in the same chromosome show linkage.	353
	The frequency of recombination s a measure of the distance between linked genes.	355
	Genetic mapping assigns a location to each gene along a chromosome.	355
	HOW DO WE KNOW? Can recombination be used to construct a genetic map of a chromosome?	356
	Genetic risk factors for disease can be localized by genetic mapping.	356
17.4	Inheritance of Genes in the Y Chromosome	357
	Y-linked genes are transmitted from father to son to grandson.	357
?	How can the Y chromosome be used to trace ancestry?	358
17.5	Inheritance of Mitochondrial and Chloroplast DNA	359
	Mitochondrial and chloroplast genomes often show uniparental inheritance.	359
	Maternal inheritance is characteristic of mitochondrial diseases.	360
?	How can mitochondrial DNA be used to trace ancestry?	360


CHAPTER 18 THE GENETIC AND ENVIRONMENTAL BASIS OF COMPLEX TRAITS 363

18.1	Heredity and Environment	364
	Complex traits are affected by the environment.	365
	Complex traits are affected by multiple genes.	366

	The relative importance of genes and environment can be determined by differences among individuals.	367
	Genetic and environmental effects can interact in unpredictable ways.	367
18.2	Resemblance Among Relatives	368
	For complex traits, offspring resemble parents but show regression toward the mean.	369
	Heritability is the proportion of the total variation due to genetic differences among individuals.	370
18.3	Twin Studies	371
	Twin studies help separate the effects of genes and environment in differences among individuals.	371
	HOW DO WE KNOW? What is the relative importance of genes and of the environment for common traits?	372
18.4	Complex Traits in Health and Disease	373
	Most common diseases and birth defects are affected by many genes that each have relatively small effects.	373
	Human height is affected by hundreds of genes.	374
?	Can personalized medicine lead to effective treatments of common diseases?	375

CHAPTER 19 GENETIC AND EPIGENETIC REGULATION 377

19.1	Chromatin to Messenger RNA in Eukaryotes	378
	Gene expression can be influenced by chemical modification of DNA or histones.	378
	Gene expression can be regulated at the level of an entire chromosome.	380
	Transcription is a key control point in gene expression.	382
	RNA processing is also important in gene regulation.	385
19.2	Messenger RNA to Phenotype in Eukaryotes	384
	Small regulatory RNAs inhibit translation or promote mRNA degradation.	384
	Translational regulation controls the rate, timing, and location of protein synthesis.	384
	Protein structure and chemical modification modulate protein effects on phenotype.	385
?	How do lifestyle choices affect expression of your personal genome?	386
19.3	Transcriptional Regulation in Prokaryotes	386

Transcriptional regulation can be positive or negative.	387
Lactose utilization in <i>E. coli</i> is the pioneering example of transcriptional regulation.	388
HOW DO WE KNOW? How does lactose lead to the production of active β -galactosidase enzyme?	388
The repressor protein binds with the operator and prevents transcription, but not in the presence of lactose.	389
The function of the lactose operon was revealed by genetic studies.	390
The lactose operon is also positively regulated by CRP–cAMP.	390
Transcriptional regulation determines the outcome of infection by a bacterial virus.	391
VISUAL SYNTHESIS Virus: A Genome in Need of a Cell	394

CHAPTER 20 GENES AND DEVELOPMENT

20.1	Genetic Programs of Development	400
	The fertilized egg is a totipotent cell.	400
	Cellular differentiation increasingly restricts alternative fates.	401
	HOW DO WE KNOW? How do stem cells lose their ability to differentiate into any cell type?	402
?	Can cells with your personal genome be reprogrammed for new therapies?	403
20.2	Hierarchical Control of Development	404
	<i>Drosophila</i> development proceeds through egg, larval, and adult stages.	404
	The egg is a highly polarized cell.	405
	Development proceeds by progressive regionalization and specification.	406
	Homeotic genes determine where different body parts develop in the organism.	408
20.3	Evolutionary Conservation of Key Transcription Factors in Development	410
	Animals have evolved a wide variety of eyes.	410
	Pax6 is a master regulator of eye development.	410
20.4	Combinatorial Control in Development	412
	Floral differentiation is a model for plant development.	412
	The identity of the floral organs is determined by combinatorial control.	413

20.5	Cell Signaling in Development	415
	A signaling molecule can cause multiple responses in the cell.	415
	Developmental signals are amplified and expanded.	416
	VISUAL SYNTHESIS Genetic Variation and Inheritance	418
? C	ASE 4 Malaria: Coevolution of Humans and a Parasite	422

CHAPTER 21 EVOLUTION

How Genotypes and Phenotypes Change over Time

21.1	Genetic Variation	426
	Population genetics is the study of patterns of genetic variation.	426
	Mutation and recombination are the two sources of genetic variation.	427
21.2	Measuring Genetic Variation	427
	To understand patterns of genetic variation, we require information about allele frequencies.	427
	Early population geneticists relied on observable traits and gel electrophoresis to measure variation.	428
	DNA sequencing is the gold standard for measuring genetic variation.	428
	HOW DO WE KNOW? How is genetic variation measured?	429
21.3	Evolution and the Hardy–Weinberg Equilibrium	430
	Evolution is a change in allele or genotype frequency over time.	430
	The Hardy–Weinberg equilibrium describes situations in which allele and genotype frequencies do not change.	430
	The Hardy–Weinberg equilibrium relates allele frequencies and genotype frequencies.	431
	The Hardy–Weinberg equilibrium is the starting point for population genetic analysis.	432
21.4	Natural Selection	432
	Natural selection brings about adaptations.	432
	The Modern Synthesis combines Mendelian genetics and Darwinian evolution.	434
	Natural selection increases the frequency of advantageous mutations and decreases the frequency of deleterious mutations.	434
?	What genetic differences have made some individuals more and some less susceptible to malaria?	434

	Natural selection can be stabilizing, directional, or disruptive.	435
	HOW DO WE KNOW? How far can artificial selection be taken?	436
	Sexual selection increases an individual's reproductive success.	437
21.5	Migration, Mutation, Genetic Drift, and Non-Random Mating	438
	Migration reduces genetic variation between populations.	438
	Mutation increases genetic variation.	438
	Genetic drift has a large effect in small populations.	438
	Non-random mating alters genotype frequencies without affecting allele frequencies.	439
21.6	Molecular Evolution	440
	The molecular clock relates the amount of sequence difference between species and the time since the species diverged.	440
	The rate of the molecular clock varies.	440

CHAPTER 22 SPECIES AND SPECIATION

445

i ne Biological Species Concept	440
Species are reproductively isolated from other species.	446
The BSC is more useful in theory than in practice.	447
The BSC does not apply to asexual or extinct organisms.	447
Ring species and hybridization complicate the BSC.	448
Ecology and evolution can extend the BSC.	448
Reproductive Isolation	449
Pre-zygotic isolating factors occur before egg fertilization.	450
Post-zygotic isolating factors occur after egg fertilization.	450
Speciation	450
Speciation is a by-product of the genetic divergence of separated populations.	451
	171
Allopatric speciation is speciation that results from the geographical separation of populations.	451
geographical separation of populations. Dispersal and vicariance can isolate populations from	451
	The BSC is more useful in theory than in practice. The BSC does not apply to asexual or extinct organisms. Ring species and hybridization complicate the BSC. Ecology and evolution can extend the BSC. Reproductive Isolation Pre-zygotic isolating factors occur before egg fertilization. Post-zygotic isolating factors occur after egg fertilization. Speciation Speciation is a by-product of the genetic divergence of

?	How did malaria come to infect humans?	455
	Sympatric populations—those not geographically separated—may undergo speciation.	456
	Speciation can occur instantaneously.	458
22.4	Speciation and Selection	459
	Speciation can occur with or without natural selection.	459
	Natural selection can enhance reproductive isolation.	459
	VISUAL SYNTHESIS Speciation	460

CHAPTER 23 **EVOLUTIONARY PATTERNS** Phylogeny and Fossils

23.1	Reading a Phylogenetic Tree	464
	Phylogenetic trees provide hypotheses of evolutionary relationships.	464
	The search for sister groups lies at the heart of phylogenetics.	465
	A monophyletic group consists of a common ancestor and all its descendants.	466
	Taxonomic classifications are information storage and retrieval systems.	467
23.2	Building a Phylogenetic Tree	468
	Homology is similarity by common descent.	468
	Shared derived characters enable biologists to reconstruct evolutionary history.	469
	The simplest tree is often favored among multiple possible trees.	469
	Molecular data complement comparative morphology in reconstructing phylogenetic history.	471
	Phylogenetic trees can help solve practical problems.	472
	HOW DO WE KNOW? Did an HIV-positive dentist spread the AIDS virus to his patients?	473
23.3	The Fossil Record	474
	Fossils provide unique information.	474
	Fossils provide a selective record of past life.	474
	Geological data indicate the age and environmental setting of fossils.	476
	Fossils can contain unique combinations of characters.	479
	HOW DO WE KNOW? Can fossils bridge the evolutionary gap between fish and tetrapod vertebrates?	481

	Rare mass extinctions have altered the course of evolution.	481
23.4	Comparing Evolution's Two Great Patterns	482
	Phylogeny and fossils complement each other.	482
	Agreement between phylogenies and the fossil record provides strong evidence of evolution.	482

CHAPTER 24 HUMAN ORIGINS AND EVOLUTION

2

24.1	The Great Apes	486
	Comparative anatomy shows that the human lineage branches off the great apes tree.	486
	Molecular analysis reveals that our lineage split from the chimpanzee lineage about 5–7 million years ago.	487
	HOW DO WE KNOW? How closely related are humans and chimpanzees?	488
	The fossil record gives us direct information about our evolutionary history.	488
24.2	African Origins	491
	Studies of mitochondrial DNA reveal that modern humans evolved in Africa relatively recently.	491
	HOW DO WE KNOW? When and where did the most recent common ancestor of all living humans live?	492
	Studies of the Y chromosome provide independent evidence for a recent origin of modern humans.	494
	Neanderthals disappear from the fossil record as modern humans appear, but have contributed to the modern human gene pool.	494
24.3	Distinct Features of Our Species	495
	Bipedalism was a key innovation.	495
	Adult humans share many features with juvenile chimpanzees.	496
	Humans have large brains relative to body size.	496
	The human and chimpanzee genomes help us identify genes that make us human.	498
24.4	Human Genetic Variation	498
	The prehistory of our species has had an impact on the distribution of genetic variation.	499
	The recent spread of modern humans means that there are few genetic differences between groups.	500

	Some human differences have likely arisen by natural selection.	500
?	What human genes are under selection for resistance to malaria?	501
24.5	Culture, Language, and Consciousness	502
	Culture changes rapidly.	502
	Is culture uniquely human?	503
	Is language uniquely human?	503
	Is consciousness uniquely human?	503

PART 2 FROM ORGANISMS TO THE ENVIRONMENT

CHAPTER 25 CYCLING CARBON

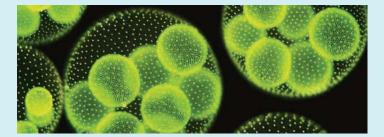
2

485

25.1	The Short-Term Carbon Cycle	510
	Photosynthesis and respiration are key processes in short-term carbon cycling.	511
	HOW DO WE KNOW? How much CO ₂ was in the atmosphere 1000 years ago?	512
	The regular oscillation of CO_2 reflects the seasonality of photosynthesis in the Northern Hemisphere.	512
	Human activities play an important role in the modern carbon cycle.	513
	Carbon isotopes show that much of the CO ₂ added to air over the past half century comes from burning fossil fuels.	513
	HOW DO WE KNOW? What is the major source of the CO ₂ that has accumulated in Earth's atmosphere over the past two centuries?	514
25.2	The Long-Term Carbon Cycle	515
	Reservoirs and fluxes are key in long-term carbon cycling.	515
	Physical processes add and remove CO_2 from the atmosphere.	516
	Records of atmospheric composition over 400,000 years show periodic shifts in CO_2 content.	517
	Variations in atmospheric CO ₂ over hundreds of millions of years reflect plate tectonics and evolution.	520
25.3	The Carbon Cycle: Ecology, Biodiversity, and Evolution	521
	Food webs trace the cycling of carbon through communities and ecosystems.	521
	Biological diversity reflects the many ways that organisms participate in the carbon cycle.	522

		arbon cycle weaves together biological evolution and onmental change through Earth history.	522
?	CASE 5	The Human Microbiome: Diversity Within	525

CHAPTER 26 BACTERIA AND ARCHAEA



26.1	Two Prokaryotic Domains	530
	The bacterial cell is small but powerful.	530
	Diffusion limits cell size in bacteria.	530
	Horizontal gene transfer promotes genetic diversity in bacteria.	531
	Archaea form a second prokaryotic domain.	534
26.2	An Expanded Carbon Cycle	535
	Many photosynthetic bacteria do not produce oxygen.	535
	Many bacteria respire without oxygen.	536
	Photoheterotrophs obtain energy from light but obtain carbon from preformed organic molecules.	537
	Chemoautotrophy is a uniquely prokaryotic metabolism.	537
26.3	Other Biogeochemical Cycles	538
	Bacteria and archaeons dominate Earth's sulfur cycle.	538
	The nitrogen cycle is also driven by bacteria and archaeons.	539
26.4	The Diversity of Bacteria	540
	Bacterial phylogeny is a work in progress.	540
	HOW DO WE KNOW? How many kinds of bacterium live in the oceans?	541
	What, if anything, is a bacterial species?	542
	Proteobacteria are the most diverse bacteria.	543
	The gram-positive bacteria include organisms that cause and cure disease.	543
	Photosynthesis is widely distributed on the bacterial tree.	544
26.5	The Diversity of Archaea	545
	The archaeal tree has anaerobic, hyperthermophilic organisms near its base.	545
	The Archaea include several groups of acid-loving microorganisms.	546
	Only Archaea produce methane as a by-product of energy metabolism.	546
	One group of the Euryarchaeota thrives in extremely salty environments.	546

7
8
8
9
0
5

CHAPTER 27 **EUKARYOTIC CELLS** Origins and Diversity

529

27.1	The Eukaryotic Cell: A Review	554
	Internal protein scaffolding and dynamic membranes organize the eukaryotic cell.	554
	In eukaryotic cells, energy metabolism is localized in mitochondria and chloroplasts.	555
	The organization of the eukaryotic genome also helps explain eukaryotic diversity.	555
	Sex promotes genetic diversity in eukaryotes and gives rise to distinctive life cycles.	556
27.2	Eukaryotic Origins	557
?	What role did symbiosis play in the origin of chloroplasts?	557
	HOW DO WE KNOW? What is the evolutionary origin of chloroplasts?	558
?	What role did symbiosis play in the origin of mitochondria?	559
?	How did the eukaryotic cell originate?	560
	How did the eukaryotic cell originate?	560
	In the oceans, many single-celled eukaryotes harbor	
	symbiotic bacteria.	562
27.3	Eukaryotic Diversity	562
	Our own group, the opisthokonts, is the most diverse eukaryotic superkingdom.	563
	Amoebozoans include slime molds that produce multicellular structures.	564
	Archaeplastids, which include land plants, are photosynthetic organisms.	566
	Stramenopiles, alveolates, and rhizarians dominate eukaryotic diversity in the oceans.	568

	Photosynthesis spread through eukaryotes by repeated endosymbioses involving eukaryotic algae.	570
	HOW DO WE KNOW? How did photosynthesis spread through the Eukarya?	571
27.4	The Fossil Record of Protists	572
	Fossils show that eukaryotes existed at least 1800 million	
	years ago.	573
	Protists have continued to diversify during the age of animals.	573

CHAPTER 28 BEING MULTICELLULAR

28.1	The Phylogenetic Distribution of Multicellular Organisms	578
	Simple multicellularity is widespread among eukaryotes.	578
	Complex multicellularity evolved several times.	579
28.2	Diffusion and Bulk Flow	580
	Diffusion is effective only over short distances.	581
	Animals achieve large size by circumventing limits imposed by diffusion.	581
	Complex multicellular organisms have structures specialized for bulk flow.	581
28.3	How to Build a Multicellular Organism	582
	Complex multicellularity requires adhesion between cells.	583
	How did animal cell adhesion originate?	583
	Complex multicellularity requires communication between cells.	584
	HOW DO WE KNOW? How do bacteria influence the life cycles of choanoflagellates?	584
	Complex multicellularity requires a genetic program for coordinated growth and cell differentiation.	585
28.4	Variations on a Theme: Plants versus Animals	587
	Cell walls shape patterns of growth and development in plants.	587
	Animal cells can move relative to one another.	588
28.5	The Evolution of Complex Multicellularity	589
	Fossil evidence of complex multicellular organisms is first observed in rocks deposited 579–555 million years ago.	589
	Oxygen is necessary for complex multicellular life.	590
	Land plants evolved from green algae that could carry out photosynthesis on land.	591

	5	latory genes have played an important role in the tion of complex multicellular organisms.	592
		DO WE KNOW? What controls color pattern in rfly wings?	593
?	CASE 6	Agriculture: Feeding a Growing Population	595

CHAPTER 29 **PLANT STRUCTURE AND FUNCTION** Moving Photosynthesis onto Land

29.1	Plant Structure and Function: An Evolutionary Perspective	600
	Land plants are a monophyletic group that includes vascular plants and bryophytes.	600
29.2	The Leaf: Acquiring CO ₂ While Avoiding Dessication	601
	CO ₂ uptake results in water loss.	601
	The cuticle restricts water loss from leaves but inhibits the uptake of CO_2 .	602
	Stomata allow leaves to regulate water loss and carbon gain.	603
	CAM plants use nocturnal CO_2 storage to avoid water loss during the day.	603
	$\rm C_4$ plants suppress photorespiration by concentrating $\rm CO_2$ in bundle-sheath cells	604
	HOW DO WE KNOW? How do we know that C_4 photosynthesis suppresses photorespiration?	606
29.3	The Stem: Transport of Water Through Xylem	606
	Xylem provides a low-resistance pathway for the movement of water.	607
	HOW DO WE KNOW? How large are the forces that allow leaves to pull water from the soil?	608
	Water is pulled through xylem by an evaporative pump.	609
	Xylem transport is at risk of conduit collapse and cavitation.	610
29.4	The Stem: Transport of Carbohydrates Through Phloem	610
	Phloem transports carbohydrates from sources to sinks.	611
	Carbohydrates are pushed through phloem by an osmotic pump.	611
	Phloem feeds both the plant and the rhizosphere.	612
29.5	The Root: Uptake of Water and Nutrients from the Soil	612
	Plants obtain essential mineral nutrients from the soil.	613
	Nutrient uptake by roots is highly selective.	614

	Nutrient uptake requires energy.	614
	Mycorrhizae enhance nutrient uptake.	615
	Symbiotic nitrogen-fixing bacteria supply nitrogen to both plants and ecosystems.	616
?	How has nitrogen availability influenced agricultural productivity?	616

CHAPTER 30 PLANT REPRODUCTION

Finding Mates and Dispersing Young

80.1	Alternation of Generations	620
	The algal sister groups of land plants have one multicellular generation in their life cycle.	620
	Bryophytes illustrate how the alternation of generations allows the dispersal of spores in the air.	621
	Dispersal enhances reproductive fitness in several ways.	623
	Spore-dispersing vascular plants have free-living gametophytes and sporophytes.	623
30.2	Seed Plants	625
	The seed plant life cycle is distinguished by four major steps.	625
	Pine trees illustrate how the transport of pollen in air allows fertilization to occur in the absence of external sources of water.	625
	Seeds enhance the dispersal and establishment of the next sporophyte generation.	627
80.3	Flowering Plants	628
	Flowers are reproductive shoots specialized for the production, transfer, and receipt of pollen.	628
		628 631
	production, transfer, and receipt of pollen. The diversity of floral morphology is related to modes of	
	production, transfer, and receipt of pollen. The diversity of floral morphology is related to modes of pollination.	631
	production, transfer, and receipt of pollen. The diversity of floral morphology is related to modes of pollination. Angiosperms have mechanisms to increase outcrossing. HOW DO WE KNOW? Are pollinator shifts associated with	631 632
	production, transfer, and receipt of pollen. The diversity of floral morphology is related to modes of pollination. Angiosperms have mechanisms to increase outcrossing. HOW DO WE KNOW? Are pollinator shifts associated with the formation of new species? Angiosperms delay provisioning their ovules until after	631 632 633
?	production, transfer, and receipt of pollen. The diversity of floral morphology is related to modes of pollination. Angiosperms have mechanisms to increase outcrossing. HOW DO WE KNOW? Are pollinator shifts associated with the formation of new species? Angiosperms delay provisioning their ovules until after fertilization.	631 632 633 635
?	production, transfer, and receipt of pollen. The diversity of floral morphology is related to modes of pollination. Angiosperms have mechanisms to increase outcrossing. HOW DO WE KNOW? Are pollinator shifts associated with the formation of new species? Angiosperms delay provisioning their ovules until after fertilization. Fruits enhance the dispersal of seeds. How did scientists increase crop yields during the Green	631 632 633 635 636

CHAPTER 31 PLANT GROWTH AND DEVELOPMENT

31.1	Shoot Growth and Development	642
	Shoots grow by adding new cells at their tips.	642
	Stem elongation occurs just below the apical meristem.	643
	The development of new apical meristems allows stems to branch.	644
	The shoot apical meristem controls the production and arrangement of leaves.	644
	Young leaves develop vascular connections to the stem.	646
	Flower development terminates the growth of shoot meristems.	646
31.2	Plant Hormones	647
	Hormones affect the growth and differentiation of plant cells.	647
	Polar transport of auxin guides the placement of leaf primordia and the development of vascular connections with the stem.	647
?	What is the developmental basis for the shorter stems of high- yielding rice and wheat?	649
	Cytokinins, in combination with other hormones, control the growth of axillary buds.	650
31.3	Secondary Growth	650
	Shoots produce two types of lateral meristem.	651
	The vascular cambium produces secondary xylem and phloem.	651
	The cork cambium produces an outer protective layer.	652
	Wood has both mechanical and transport functions.	652
31.4	Root Growth and Development	654
	Roots grow by producing new cells at their tips.	654
	Root elongation and vascular development are coordinated.	654
	The formation of new root apical meristems allows roots	
	to branch.	655
	The structures and functions of root systems are diverse.	655
31.5	The Environmental Context of Growth and Development	656
	Plants orient the growth of their stems and roots by light and gravity.	656
	HOW DO WE KNOW? How do plants grow toward light?	657
	HOW DO WE KNOW? How do seeds detect the presence of plants growing overhead?	659
	Seeds can delay germination if they detect the presence of plants overhead.	659

	Plants grow taller and branch less when growing in the	
	shade of other plants.	660
	Roots elongate more and branch less when water is scarce.	661
	Exposure to wind results in shorter and stronger stems.	661
31.6	Timing of Developmental Events	661
	Flowering time is affected by day length.	661
	Plants use their internal circadian clock and photoreceptors to determine day length.	662
	Vernalization prevents plants from flowering until winter	
	has passed.	663
	Plants use day length as a cue to prepare for winter.	664

CHAPTER 32 **PLANT DEFENSE** Keeping the World Green

32.1	Protection Against Pathogens	668
	Plant pathogens infect and exploit host plants by a variety of	
	mechanisms.	668
	Plants are able to detect and respond to pathogens.	670
	Plants respond to infections by isolating infected regions.	671
	Mobile signals trigger defenses in uninfected tissues.	671
	HOW DO WE KNOW? Can plants develop immunity to specific pathogens?	672
	Plants defend against viral infections by producing siRNA.	673
	A pathogenic bacterium provides a way to modify plant genomes.	673
32.2	Defense Against Herbivores	674
	Plants use mechanical and chemical defenses to avoid being eaten.	674
	Diverse chemical compounds deter herbivores.	675
	Some plants provide food and shelter for ants, which actively defend them.	677
	Grasses can regrow quickly following grazing by mammals.	678
32.3	Allocating Resources to Defense	679
	Some defenses are always present, whereas others are turned on in response to a threat.	679
	Plants can sense and respond to herbivores.	679
	HOW DO WE KNOW? Can plants communicate?	680
	Plants produce volatile signals that attract insects that prey upon herbivores.	681

	Nutrient-rich environments select for plants that allocate more resources to growth than to defense.	681
	Exposure to multiple threats can lead to trade-offs.	682
2.4	Defense and Plant Diversity	682
	The evolution of new defenses may allow plants to diversify.	682
	Pathogens, herbivores, and seed predators can increase plant biodiversity.	683
?	Can modifying plants genetically protect crops from herbivores and pathogens?	683

CHAPTER 33 PLANT DIVERSITY

33.1 Plant Diversity: An Evolutionary Overview

	Four major transformations in life cycle and structure characterize the evolutionary history of plants.	688
	Plant diversity has changed over time.	690
33.2	Bryophytes	690
	Bryophytes are small, simple, and tough.	690
	The small gametophytes and unbranched sporophytes of bryophytes are adaptations for reproducing on land.	691
	Bryophytes exhibit several cases of convergent evolution with the vascular plants.	692
	Sphagnum moss plays an important role in the global carbon cycle.	693
33.3	Spore-Dispersing Vascular Plants	693
	Rhynie cherts provide a window into the early evolution of vascular plants.	693
	Lycophytes are the sister group of all other vascular plants.	694
	Ancient lycophytes included giant trees that dominated coal swamps about 320 million years ago.	695
	HOW DO WE KNOW? Did woody plants evolve more than once?	696
	Ferns and horsetails are morphologically and ecologically diverse.	697
	Fern diversity has been strongly affected by the evolution of angiosperms.	698
	An aquatic fern contributes to rice production.	698
33.4	Gymnosperms	699
	Cycads and ginkgos are the earliest diverging groups of living gymnosperms.	699

	Conifers are woody plants that thrive in dry and cold climates.	700
	Gnetophytes are gymnosperms that have independently evolved xylem vessels and double fertilization.	702
33.5	Angiosperms	702
	Angiosperms may have originated in the shady understory of tropical forests.	702
	Angiosperm diversity results from flowers and xylem vessels, among other traits, as well as interactions with animals and other organisms.	704
	Monocots are diverse in shape and size despite not forming a vascular cambium.	704
	HOW DO WE KNOW? When did grasslands expand over the land surface?	706
	Eudicots are the most diverse group of angiosperms.	707
?	What can be done to protect the genetic diversity of crop species?	708
	VISUAL SYNTHESIS Angiosperms: Structure and Function	710

CHAPTER 34 FUNGI	
Structure, Function, and Diversity	715

34.1	Growth and Nutrition	71
	Hyphae permit fungi to explore their environment for food resources.	710
	Fungi transport materials within their hyphae.	71
	Not all fungi produce hyphae.	71
	Fungi are principal decomposers of plant tissues.	718
	Fungi are important plant and animal pathogens.	718
	Many fungi form symbiotic associations with plants and animals.	720
	Lichens are symbioses between a fungus and a green alga or a cyanobacterium.	720
34.2	Reproduction	722
34.2	Reproduction Fungi proliferate and disperse using spores.	72 72
34.2	•	
34.2	Fungi proliferate and disperse using spores. Multicellular fruiting bodies facilitate the dispersal of sexually	722
34.2	Fungi proliferate and disperse using spores. Multicellular fruiting bodies facilitate the dispersal of sexually produced spores. The fungal life cycle often includes a stage in which haploid	722 723
34.2	Fungi proliferate and disperse using spores. Multicellular fruiting bodies facilitate the dispersal of sexually produced spores. The fungal life cycle often includes a stage in which haploid cells fuse, but nuclei do not. HOW DO WE KNOW? What determines the shape of fungal	722 723 723

34.3	Diversity	726
	Fungi are highly diverse.	726
	Fungi evolved from aquatic, unicellular, and flagellated ancestors.	727
	Zygomycetes produce hyphae undivided by septa.	728
	Glomeromycetes form endomycorrhizae.	728
	The Dikarya produce regular septa during mitosis.	728
	Ascomycetes are the most diverse group of fungi.	729
	HOW DO WE KNOW? Can a fungus influence the behavior of an ant?	731
	Basidiomycetes include smuts, rusts, and mushrooms.	731
?	How do fungi threaten global wheat production?	733
? CA	SE 7 Predator–Prey: A Game of Life and Death	736

CHAPTER 35 ANIMAL NERVOUS SYSTEMS

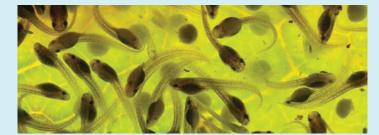
35.1	Nervous System Function and Evolution	740
	Animal nervous systems have three types of nerve cell.	740
	Nervous systems range from simple to complex.	741
?	What body features arose as adaptations for successful predation?	742
35.2	Neuron Structure	743
	Neurons share a common organization.	743
	Neurons differ in size and shape.	744
	Neurons are supported by other types of cell.	744
35.3	Neuron Function	745
	The resting membrane potential is negative and results in part from the movement of potassium ions.	745
	Neurons are excitable cells that transmit information by action potentials.	746
	Neurons propagate action potentials along their axons by sequentially opening and closing adjacent Na ⁺ and K ⁺ ion	
	channels.	748
	Neurons communicate at synapses.	749
	HOW DO WE KNOW? What is the resting membrane potential? How does electrical activity change during	
	an action potential?	750
	Signals between neurons can be excitatory or inhibitory.	752
35.4	Nervous System Organization	754

Nervous systems are organized into peripheral and central components.	754
Peripheral nervous systems have voluntary and involuntary components.	755
The nervous system helps to maintain homeostasis.	756
Simple reflex circuits provide rapid responses to stimuli.	757

CHAPTER 36 ANIMAL SENSORY SYSTEMS AND BRAIN FUNCTION

36.1	Animal Sensory Systems	761
	Specialized sensory receptors detect diverse stimuli.	762
	Chemoreceptors are universally present in animals.	763
	Mechanoreceptors are a second general class of ancient sensory receptors.	764
	Electroreceptors sense light, thermoreceptors sense temperature, and nociceptors sense pain.	764
	Stimuli are transmitted by changes in the firing rate of action potentials.	764
36.2	Smell and Taste	766
	Smell and taste depend on chemoreception of molecules carried in the environment and in food.	766
36.3	Gravity, Movement, and Sound	767
	Hair cells sense gravity and motion.	767
	Hair cells detect the physical vibrations of sound.	768
?	How have sensory systems evolved in predators and prey?	771
36.4	Vision	771
	Animals see the world through different types of eyes.	771
	The structure and function of the vertebrate eye underlie image processing.	773
	Vertebrate photoreceptors are unusual because they hyperpolarize in response to light.	774
	Color vision detects different wavelengths of light.	774
	Local sensory processing of light determines basic features of shape and movement.	775
	HOW DO WE KNOW? How does the retina process visual information?	776
36.5	Brain Organization and Function	777
	The brain processes and integrates information received from different sensory systems.	777

	The brain is divided into lobes with specialized functions.	778
	Information is topographically mapped into the vertebrate cerebral cortex.	780
36.6	Memory and Cognition	780
	The brain serves an important role in memory and learning.	780
	Cognition involves brain information processing and decision making.	781


CHAPTER 37 **ANIMAL MOVEMENT** Muscles and Skeletons

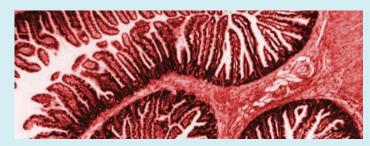
57.1	Muscles: Biological Motors I hat Generate Force	70/
	and Produce Movement	786
	Muscles use chemical energy to produce force and	
	movement.	786
	Muscles can be striated or smooth.	786
	Skeletal and cardiac muscle fibers are organized into	
	repeating contractile units called sarcomeres.	787
	Muscles contract by the sliding of myosin and actin	700
	filaments.	789
	Calcium regulates actin-myosin interaction through excitation-contraction coupling.	791
	Calmodulin regulates Ca ²⁺ activation and relaxation of	
	smooth muscle.	792
37.2	Muscle Contractile Properties	792
	Muscle length affects actin-myosin overlap and generation of force.	792
	HOW DO WE KNOW? How does filament overlap affect force generation in muscles?	793
	Muscle force and shortening velocity are inversely related.	793
	Antagonist pairs of muscles produce reciprocal motions at	
	a joint.	794
	Muscle force is summed by an increase in stimulation	
	frequency and the recruitment of motor units.	795
	Skeletal muscles have slow-twitch and fast-twitch fibers.	796
?	How do different types of muscle fiber affect the speed	
	of predators and prey?	797
37.3	Animal Skeletons	797
	Hydrostatic skeletons support animals by muscles that act	
	on a fluid-filled cavity.	797

	Exoskeletons provide hard external support and protection.	798
	The rigid bones of vertebrate endoskeletons are jointed for motion and can be repaired if damaged.	799
37.4	Vertebrate Skeletons	800
	Vertebrate bones form directly or by forming a cartilage model first.	801
	Two main types of bone are compact and spongy bone.	801
	Bones grow in length and width, and can be repaired.	802
	Joint shape determines range of motion and skeletal muscle organization.	802
	Muscles exert forces by skeletal levers to produce joint motion.	802

CHAPTER 38 ANIMAL ENDOCRINE SYSTEMS

38.1	An Overview of Endocrine Function	808
	he endocrine system helps to regulate an organism's response to its environment.	808
	The endocrine system regulates growth and development.	809
	HOW DO WE KNOW? How are growth and development controlled in insects?	810
	The endocrine system underlies homeostasis.	811
38.2	Properties of Hormones	813
	Hormones act specifically on cells that bind the hormone.	813
	Two main classes of hormone are peptides and amines, and steroid hormones.	813
	Hormonal signals are to strengthen their effect.	815
	Hormones are evolutionarily conserved molecules with diverse functions.	818
38.3	The Vertebrate Endocrine System	818
	The pituitary gland integrates diverse bodily functions by secreting hormones in response to signals from the hypothalamus.	819
	Many targets of pituitary hormones are endocrine tissues	0.7
	that also secrete hormones.	820
	Other endocrine organs have diverse functions.	821
?	How does the endocrine system influence predators and prey?	821
38.4	Other Forms of Chemical Communication	822

Local chemical signals regulate neighboring target cells.	823
Pheromones are chemical compounds released into the	
environment to signal physiological and behavioral changes	
in other species members.	823


CHAPTER 39 ANIMAL CARDIOVASCULAR AND RESPIRATORY SYSTEMS

39.1	Delivery of Oxygen and Elimination of Carbon Dioxide	828
	Diffusion governs gas exchange over short distances.	828
	Bulk flow moves fluid over long distances.	829
39.2	Respiratory Gas Exchange	830
	Many aquatic animals breathe through gills.	830
	Insects breathe air through tracheae.	832
	Most terrestrial vertebrates breathe by tidal ventilation of internal lungs.	832
	Mammalian lungs are well adapted for gas exchange.	833
	The structure of bird lungs allows unidirectional airflow for increased oxygen uptake.	834
	Voluntary and involuntary mechanisms control breathing.	835
39.3	Oxygen Transport by Hemoglobin	835
	Blood is composed of fluid and several types of cell.	835
	HOW DO WE KNOW? What is the molecular structure of hemoglobin and myoglobin?	837
	Hemoglobin is an ancient molecule with diverse roles related to oxygen binding and transport.	837
	Hemoglobin reversibly binds oxygen.	837
	Myoglobin stores oxygen, enhancing delivery to muscle mitochondria.	838
	Many factors affect hemoglobin–oxygen binding.	839
		037
39.4	Circulatory Systems	840
	Circulatory systems have vessels of different sizes to facilitate bulk flow and diffusion.	841
	Arteries are muscular, elastic vessels that carry blood away from the heart under high pressure.	841
	Veins are thin-walled vessels that return blood to the heart under low pressure.	843
	Compounds and fluid move across capillary walls by diffusion, filtration, and osmosis.	843

?	How do hormones and nerves provide homeostatic regulation of blood flow as well as allow an animal to respond to stress?	843
9.5	The Evolution, Structure, and Function of the Heart	844
	Fish have two-chambered hearts and a single circulatory system.	845
	Amphibians and reptiles have more three-chambered hearts and partially divided circulations.	845
	Mammals and birds have four-chambered hearts and fully divided pulmonary and systemic circulations.	846
	Cardiac muscle cells are electrically connected to contract in synchrony.	847
	Heart rate and cardiac output are regulated by the autonomic nervous system.	848

CHAPTER 40 ANIMAL METABOLISM, NUTRITION, AND DIGESTION

40.1	Patterns of Animal Metabolism	852
	Animals rely on anaerobic and aerobic metabolism.	852
	Metabolic rate varies with activity level.	854
?	Does body temperature limit activity level in predators and prey?	854
	Metabolic rate is affected by body size.	855
	Metabolic rate is linked to body temperature.	855
	HOW DO WE KNOW? How is metabolic rate affected by running speed and body size?	856
40.2	Animal Nutrition and Diet	857
	Energy balance is a form of homeostasis.	857
	An animal's diet must supply nutrients that it cannot synthesize.	857
	VISUAL SYNTHESIS Homeostasis and Thermoregulation	858
40.3	Adaptations for Feeding	861
	Suspension filter feeding is common in many aquatic animals.	861
	Large aquatic animals apprehend prey by suction feeding and active swimming.	862
	Jaws and teeth provide specialized food capture and mechanical breakdown of food.	862

40.4 Digestion and Absorption of Food The digestive tract has regional specializations. Digestion begins in the mouth. Further digestion and storage of nutrients take place in the stomach. Final digestion and nutrient absorption take place in the small intestine. The large intestine absorbs water and stores waste. The lining of the digestive tract is composed of distinct layers. Plant-eating animals have specialized digestive tracts that reflect their diets.

CHAPTER 41 ANIMAL RENAL SYSTEMS Water and Waste

1.1	Water and Electrolyte Balance	876
	Osmosis governs the movement of water across cell membranes.	876
	Osmoregulation is the control of osmotic pressure inside cells and organisms.	877
	Osmoconformers match their internal solute concentration to that of the environment.	878
	Osmoregulators have internal solute concentrations that differ from that of their environment.	878
?	Can the loss of water and electrolytes in exercise be exploited as a strategy to hunt prey?	880
1.2	Excretion of Wastes	881
	The excretion of nitrogenous wastes is linked to an animal's habitat and evolutionary history.	881
	Excretory organs work by filtration, reabsorption, and secretion.	882
	Animals have diverse excretory organs.	883
	Vertebrates filter blood under pressure through paired kidneys.	884
1.3	Structure and Function of the Mammalian Kidney	886
	The mammalian kidney has an outer cortex and inner medulla.	886
	Glomerular filtration isolates wastes carried by the blood along with water and small solutes.	887
	The proximal convoluted tubule reabsorbs solutes by active transport.	888

The loop of Henle acts as a countercurrent multiplier to create a concentration gradient from the cortex to the medulla.	888
HOW DO WE KNOW? How does the mammalian kidney produce concentrated urine?	890
The distal convoluted tubule secretes additional wastes.	891
The final concentration of urine is determined in the collecting ducts and is under hormonal control.	891
The kidneys help regulate blood pressure and blood volume.	892

CHAPTER 42 ANIMAL REPRODUCTION AND DEVELOPMENT

897

42.1	The Evolutionary History of Reproduction	898
	Asexual reproduction produces clones.	898
	Sexual reproduction involves the formation and fusion of gametes.	899
	Many species reproduce both sexually and asexually.	900
	Exclusive asexuality is often an evolutionary dead end.	901
	HOW DO WE KNOW? Do bdelloid rotifers reproduce only asexually?	902
42.2	Movement onto Land and Reproductive Adaptations	903
	Fertilization can take place externally or internally.	903
	<i>r</i> -strategists and <i>K</i> -strategists differ in number of offspring and parental care.	904
	Animals either lay eggs or give birth to live young.	904
42.3	Human Reproductive Anatomy and Physiology	905
	The male reproductive system is specialized for the production and delivery of sperm.	905
	The female reproductive system produces eggs and supports the developing embryo.	907
	Hormones regulate the human reproductive system.	908
42.4	Gamete Formation to Birth in Humans	911
	Male and female gametogenesis have both shared and distinct features.	911
	Fertilization occurs when a sperm fuses with an oocyte.	912
	The first trimester includes cleavage, gastrulation, and organogenesis.	913
	The second and third trimesters are characterized by fetal growth.	915

VISUAL SYNTHESIS Reproduction and Development	916
Childbirth is initiated by hormonal changes.	918

921

CHAPTER 43 ANIMAL IMMUNE SYSTEMS

43.1	An Overview of the Immune System	922
	Pathogens cause disease.	922
	The immune system distinguishes self from nonself.	922
	The immune system consists of innate and adaptive immunity.	923
43.2	Innate Immunity	923
	The skin and mucous membranes provide the first line of defense against infection.	924
	White blood cells provide a second line of defense against pathogens.	925
	Phagocytes recognize foreign molecules and send signals to other cells.	926
	Inflammation is a coordinated response to tissue injury.	926
	The complement system participates in the innate and adaptive immune systems.	927
43.3	Adaptive Immunity: B Cells and Antibodies	928
	B cells produce antibodies.	929
	Mammals produce five classes of antibody with different biological functions.	929
	Clonal selection is the basis for antibody specificity.	930
	Clonal selection also explains immunological memory.	931
	Genomic rearrangement creates antibody diversity.	931
	HOW DO WE KNOW? How is antibody diversity generated?	932
43.4	Adaptive Immunity: T cells and Cell-Mediated Immunity	934
	T cells include helper and cytotoxic cells.	934
	T cells have T cell receptors on their surface that recognize an antigen in association with MHC proteins.	934
	The ability to distinguish between self and nonself is acquired during T cell maturation.	936
43.5	Three Pathogens: A Virus, Bacterium, and Eukaryote	936
	The flu virus evades the immune system by antigenic drift and shift.	937
	Tuberculosis is caused by a slow-growing, intracellular bacterium.	937

	The malaria parasite changes surface molecules by antigenic variation.	938
? 0	CASE 8 Biodiversity Hotspots: Rain Forests and Reefs	941

CHAPTER 44 ANIMAL DIVERSITY 945

44.1	A Tree of Life for More than a Million Animal Species	946
	Phylogenetic trees propose an evolutionary history of animals.	946
	Morphology and development provide clues to animal phylogeny.	946
	Molecular sequence comparisons have confirmed some relationships and raised new questions.	948
44.2	The Simplest Animals: Sponges, Cnidarians, Ctenophores, and Placozoans	948
	Sponges are simple and widespread in the oceans.	948
	Cnidarians are the architects of life's largest constructions: coral reefs.	950
	Ctenophores and placozoans represent the extremes of body organization among early-branching animals.	952
	The order of early branches on the animal tree remains uncertain.	953
	The discovery of new animals with a unique body plan complicates phylogenetic hypotheses still further.	954
44.3	Bilaterian Animals	956
	Lophotrozochoans make up nearly half of all animal phyla, including the diverse and ecologically important annelids and mollusks.	956
	Ecdysozoans include nematodes, the most numerous animals, and arthropods, the most diverse.	959
	HOW DO WE KNOW? How did the diverse feeding appendages of arthropods arise?	961
	Deuterostomes include humans and other chordates, and also acorn worms and sea stars.	963
	Chordates include vertebrates, cephalochordates, and tunicates.	964
44.4	Vertebrate Diversity	966
	Fish are the earliest-branching and most diverse vertebrate animals.	967
	The common ancestor of tetrapods had four limbs.	969

44.5	The Evolutionary History of Animals	972
	Fossils and phylogeny show that animal forms were initially simple but rapidly evolved complexity.	972
	The animal body plans we see today emerged during the Cambrian Period.	973
	Tabulations of described fossils show that animal diversity has been shaped by both radiation and mass extinction over the part 500 million years.	974
	Animals began to colonize the land 420 million years ago.	974
?	How have coral reefs changed through time?	975
	VISUAL SYNTHESIS Diversity Through Time	976

CHAPTER 45 ANIMAL BEHAVIOR

15.1	Tinbergen's Questions	982
15.2	Dissecting Behavior	983
	The fixed action pattern is a stereotyped behavior.	983
	The nervous system processes stimuli and evokes behaviors.	984
	Hormones can trigger certain behaviors.	985
	Breeding experiments can help determine the degree to which a behavior is genetic.	986
	Molecular techniques provide new ways of testing the role of genes in behavior.	987
	HOW DO WE KNOW? Can genes influence behavior?	988
15.3	Learning	989
	Non-associative learning occurs without linking two events.	990
	Associative learning occurs when two events are linked.	990
	Learning is an adaptation.	990
	HOW DO WE KNOW? To what extent are insects capable of learning?	991
15.4	Orientation, Navigation, and Biological Clocks	992
	Orientation involves a directed response to a stimulus.	992
	Navigation is demonstrated by the remarkable ability of homing in birds.	993
	Biological clocks provide important time cues for many behaviors.	993
	HOW DO WE KNOW? Does a biological clock play a role in birds' ability to orient?	994

45.5	Communication	995
	Communication is the transfer of information between a sender and receiver.	995
	Some forms of communication are complex and learned during a sensitive period.	996
	Other forms of communication convey specific information.	997
45.6	Social Behavior	997
	Group selection is a weak explanation of altruistic behavior.	998
	Reciprocal altruism is one way that altruism can evolve.	999
	The concept of kin selection is based on the idea that it is possible to contribute genetically to future generations by	
	helping close relatives.	999

CHAPTER 46 **POPULATION ECOLOGY**

46.1	Populations and Their Properties	1004
	Populations are all the individuals of a species in a particular place.	1005
	Three key features of a population are its size, range, and density.	1005
	HOW DO WE KNOW? How many butterflies are there in a given population?	1006
	Ecologists estimate population size and density by sampling.	1006
46.2	Population Growth and Decline	1007
	Population size is affected by birth, death, immigration, and emigration.	1007
	Exponential growth is characterized by a constant per capital growth rate.	1008
	Carrying capacity is the maximum number of individuals a habitat can support.	1008
	Logistic growth produces an S-shaped curve and describes the growth of many natural populations.	1009
	Factors that influence population growth can be dependent on or independent of its density.	1009
46.3	Age-Structured Population Growth	1010
	Birth and death rates vary with age and environment.	1011
	Survivorship curves record changes in survival probability over an organism's life-span.	1011

	Patterns of survivorship vary among organisms.	1013
	Reproductive patterns reflect the predictability of a species' environment.	1014
	The life history of an organism shows trade-offs among physiological functions.	1014
46.4	Metapopulation Dynamics	1015
	A metapopulation is a group of populations linked by immigrants.	1015
	Island biogeography explains species diversity on habitat islands.	1016
?	How do islands promote species diversification?	1019

CHAPTER 47 SPECIES INTERACTIONS, COMMUNITIES, AND ECOSYSEMS 1021

47.1.	The Niche	1022
	The niche is a species' place in nature.	1022
	The realized niche of a species is more restricted that its fundamental niche.	1023
	Niches are shaped by evolutionary history.	1023
47.2	Antagonistic Interactions Between Species	1023
	Limited resources foster competition.	1023
	Competitive exclusion can prevent two species from	
	occupying the same niche at the same time.	1024
?	Can competition drive species diversification?	1025
	Species compete for resources other than food.	1025
	Predation, parasitism, and herbivory are interactions in which one species benefits at the expense of another.	1025
	HOW DO WE KNOW? Can predators and prey coexist stably in certain environments?	1026
	Facilitation can occur when two species prey on a third species.	1027
47.3	Mutualistic Interactions Between Species	1028
	Mutualisms are interactions between species that benefit both participants.	1028
	Mutualisms may evolve increasing interdependence.	1028
	HOW DO WE KNOW? Have aphids and their symbiotic	
	bacteria coevolved?	1029
	Digestive symbioses recycle plant material.	1030

	Mutualisms may be obligate or facultative.	1030
	The costs and benefits of species interactions can change over time.	1030
47.4	Ecological Communities	1031
	Species that live in the same place make up communities.	1031
?	How is biodiversity measured?	1032
	One species can have a great effect on all other members of the community.	1032
	Keystone species have disproportionate effects on communities.	1033
	Disturbance can modify community composition.	1034
	Succession describes the community response to new habitats or disturbance.	1035
47.5	Ecosystems	1036
	Species interactions result in food webs that cycle carbon and other elements through ecosystems.	1036
	Species interactions form trophic pyramids that transfer energy through ecosystems.	1037
	Light, water, nutrients, and diversity all influence rates of primary production.	1038
	HOW DO WE KNOW? Does species diversity promote primary productivity?	1039
	VISUAL SYNTHESIS Succession: Ecology in Microcosm	1040

CHAPTER 48 BIOMES AND GLOBAL ECOLOGY

48.1	The Physical Basis of Climate	
	The principal control on Earth's surface temperature is the angle at which solar radiation strikes the surface.	1046
	Heat is transported toward the poles by wind and ocean currents.	1047
	Global circulation patterns determine patterns of rainfall, but topography also matters.	1049
48.2	Biomes	1049
48.2	Biomes Terrestrial biomes reflect the distribution of climate.	1049 1050
48.2		
48.2	Terrestrial biomes reflect the distribution of climate. Aquatic biomes reflect climate, and also the availability of	

	The biological carbon cycle shapes ecological interactions and reflects evolution.	1060
	The nitrogen cycle also reflects the interplay between ecology and evolution.	1062
	Phosphorus cycles through ecosystems, supporting primary production.	1062
	Global patterns of primary production reflect variations in climate and nutrient availability.	1063
	HOW DO WE KNOW? Does iron limit primary production in some parts of the oceans?	1065
8.4	Global Biodiversity	1066
?	Why does biodiversity decrease from the equator toward the poles?	1066
	Evolutionary and ecological history underpins diversity.	1068

CHAPTER 49 THE ANTHROPOCENE

Humans as a Planetary Force

4

1045

49.1	The Anthropocene Period	
	Humans are a major force on the planet.	1072
49.2	Human Influence on the Carbon Cycle	1073
	As atmospheric carbon dioxide levels have increased, so has mean surface temperature.	1074
	Changing environments affect species distribution and community composition.	1076
?	How has climate change affected coral reefs around the world?	1077
	HOW DO WE KNOW? What is the effect of increased atmospheric CO ₂ and reduced ocean pH on skeleton formation in marine algae?	1080
	What can be done?	1080
49.3	Human Influence on the Nitrogen and Phosphorus Cycles	1082
	Nitrogen fertilizer transported to lakes and the sea causes eutrophication.	1082
	Phosphate fertilizer is also used in agriculture, but has finite sources.	1082
	What can be done?	1083
49.4	Human Influence on Evolution	1084

	Human activities have reduced the quality and size of many habitats, decreasing the number of species they can support.	1084	Conservation biologists have a diverse toolkit for confronting threats to biodiversity.	1092
	Overexploitation threatens species and disrupts ecological relationships within communities.	1085	Global change provides new challenges for conservation biology in the 21st century.	1092
	VISUAL SYNTHESIS Flow of Matter and Energy Through Ecosystems	1086	Sustainable development provides a strategy for conserving biodiversity while meeting the needs of the	
	Humans play an important role in the dispersal of species.	1088	human population.	1093
	Humans have altered the selective landscape for many pathogens.	1089	49.6 Scientists and Citizens in the 21st Century	1094
	Are amphibians ecology's "canary in the coal mine"?	1090	Quick Check Answers	Q-1
49.5	Conservation Biology	1091	Glossary	G-1
?	What are our conservation priorities?	1091	Index	I-1

BIOLOGY HOW LIFE WORKS

FROM CELLS TO ORGANISMS

"Nothing in biology makes sense except in the light of evolution." —THEODOSIUS DOBZHANSKY

CHAPTER 1

Life

Chemical, Cellular, and Evolutionary Foundations

Core Concepts

- 1.1 The scientific method is a deliberate way of asking and answering questions about the natural world.
- **1.2** Life works according to fundamental principles of chemistry and physics.
- **1.3** The fundamental unit of life is the cell.
- 1.4 Evolution explains the features that organisms share and those that set them apart.
- **1.5** Organisms interact with one another and with their physical environment, shaping ecological systems that sustain life.
- **1.6** In the 21st century, humans have become major agents in ecology and evolution.

Every day, remarkable things happen within and around you. Strolling through a local market, you come across a bin full of crisp apples, pick one up, and take a bite. Underlying this unremarkable occurrence is an extraordinary series of events. Your eyes sense the apple from a distance, and nerves carry that information to your brain, permitting identification. Biologists call this cognition, an area of biological study. Stimulated by the apple and recognizing it as ripe and tasty, your brain transmits impulses through nerves to your muscles. How we respond to external cues motivates behavior, another biological discipline. Grabbing the apple requires the coordinated activities of dozens of muscles that move your arm and hand to a precise spot. These movements are described by biomechanics, yet another area of biological research. And, as you bite down on the apple, glands in your mouth secrete saliva, starting to convert energy stored in the apple as sugar into energy that you will use to fuel your own activities. Physiology, like biomechanics, lies at the heart of biological function.

The study of cognition, behavior, biomechanics, and physiology are all ways of approaching **biology**, the science of how life works. **Biologists**, scientists who study life, have come to understand a great deal about these and other processes at levels that run from molecular mechanisms within the cell, through the integrated actions of many cells within an organ or body, to the interactions among different organisms in nature. We don't know everything about how life works—in fact, it seems as if every discovery raises new questions. But biology provides us with an organized way of understanding ourselves and the world around us.

Why study biology? The example of eating an apple was deliberately chosen because it is an everyday occurrence that we ordinarily wouldn't think about twice. The scope of modern biology, however, is vast, raising questions that can fire our imaginations, affect our health, and influence our future. How, for example, will our understanding of the human genome change the way that we fight cancer? How do bacteria in our digestive system help determine health and well-being? Will expected increases in the temperature and acidity of seawater doom coral reefs? Is there, or has there ever been, life on Mars? And, to echo the great storyteller Rudyard Kipling, why do leopards have spots, and tigers stripes?

We can describe six grand themes that connect and unite the many dimensions of life science, from molecules to the biosphere. These six themes are stated as Core Concepts for this chapter and are introduced in the following sections. Throughout the book, these themes will be visited again and again. We view them as the keys to understanding the many details in subsequent chapters and relating them to one another. Our hope is that by the time you finish this book, you will have an understanding of how life works, from the molecular machines inside cells and the metabolic pathways that cycle carbon through the biosphere to the process of evolution, which has shaped the living world that surrounds (and includes) us. You will, we hope, see the connections among these different ways of understanding life, and come away with a greater understanding of how scientists think about and ask questions about the natural world. How, in fact, do we know what we think we know about life? And we hope you will develop a basis for making informed decisions about your life, career, and the actions you take as a citizen.

1.1 THE SCIENTIFIC METHOD

How do we go about trying to understand the vastness and complexity of nature? For most scientists, studies of the natural world involve the complementary processes of observation and experimentation. **Observation** is the act of viewing the world around us. **Experimentation** is a disciplined and controlled way of asking and answering questions about the world in an unbiased manner.

Observation allows us to draw tentative explanations called hypotheses.

Observations allow us to ask focused questions about nature. Let's say you observe a hummingbird like the one pictured in **Fig. 1.1** hovering near a red flower, occasionally dipping its long beak into the bloom. What motivates this behavior? Is the bird feeding on some substance within the flower? Is it drawn to the flower by its vivid color? What benefit, if any, does the flower derive from this busy bird?

Observations such as these, and the questions they raise, allow us to propose tentative explanations, or **hypotheses**. We might, for example, hypothesize that the hummingbird is carrying pollen from one flower to the next, facilitating reproduction in the plant. Or we might hypothesize that nectar produced deep within the flower provides nutrition for the hummingbird—that the hummingbird's actions reflect the need to take in food. Both hypotheses provide a reasonable explanation of the behavior we observed, but they may or may not be correct. To find out, we have to test them.

Charles Darwin's classic book, *On the Origin of Species*, published in 1859, beautifully illustrates how we can piece together individual observations to construct a working hypothesis. In this book, Darwin discussed a wide range of observations, from pigeon breeding to fossils and from embryology to the unusual animals and plants found on islands. Darwin noted the success of animal breeders in selecting specific individuals for reproduction and thereby generating new breeds for agriculture or show. He appreciated that selective breeding is successful only if specific features of the animals can be passed from one generation to the next by inheritance. Reading economic treatises by the English clergyman Thomas Malthus, he understood that limiting environmental resources could select among the variety of different individuals in populations in much the way that breeders select among cows or pigeons.

Gathering together all these seemingly disparate pieces of information, Darwin argued that life has evolved over time by means of natural selection. Since its formulation, Darwin's initial hypothesis has been tested by experiments, many thousands of **FIG. 1.1** A hummingbird visiting a flower. This simple observation leads to questions: Why do hummingbirds pay so much attention to flowers? Why do they hover near red flowers? *Source: Charles J. Smith.*

them. Our knowledge of many biological phenomena, ranging from biodiversity to the way the human brain is wired, depends on direct observation followed by careful inferences that lead to models of how things work.

A hypothesis makes predictions that can be tested by observation and experiments.

Not just any idea qualifies as a hypothesis. Two features set hypotheses apart from other ways of attacking problems. First, a good hypothesis makes predictions about observations not yet made or experiments not yet run. Second, because hypotheses make predictions, we can test them. That is, we can devise an experiment to see whether the predictions made by the hypothesis actually occur, or we can go into the field to try to make further observations predicted by the hypothesis. A hypothesis, then, is a statement about nature that can be tested by experiments or by new observations. Hypotheses are testable because, even as they suggest an explanation for observations made previously, they make predictions about observations yet to be made.

→ Quick Check 1 Mice that live in sand dunes commonly have light tan fur. Develop a hypothesis to explain this coloration.

Once we have a hypothesis, we can test it to see if its predictions are accurate. Returning to the hummingbird and flower, we can test the hypothesis that the bird is transporting pollen from one flower to the next, enabling the plant to reproduce. Observation provides one type of test: If we catch and examine the bird just after it visits a flower, do we find pollen stuck to its beak or feathers? If so, our hypothesis survives the test.

Note, however, that we haven't proved the case. Pollen might be stuck on the bird for a different reason—perhaps it provides food for the hummingbird. However, if the birds didn't carry pollen from flower to flower, we would reject the hypothesis that they facilitate pollination. In other words, a single observation or experiment can lead us to reject a hypothesis, or it can support the hypothesis, but it cannot prove that a hypothesis is correct. To move forward, then, we might make a second set of observations. Does pollen that adheres to the hummingbird rub off when the bird visits a second flower of the same species? If so, we have stronger support for our hypothesis.

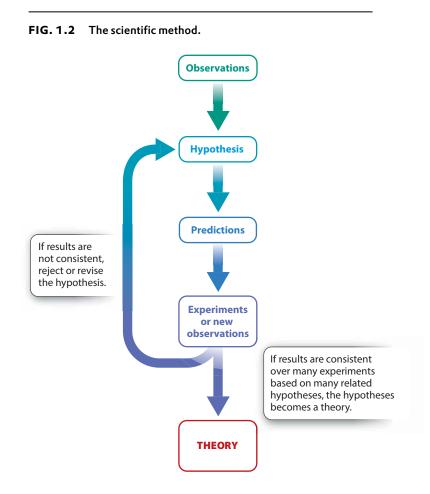
We might also use observations to test a more general hypothesis about birds

and flowers. Does red color generally attract birds and so facilitate pollination in a wide range of flowers? To answer this question, we might catalog the pollination of many red flowers and ask whether they are pollinated mainly by birds. Or we might go the opposite direction and catalog the flowers visited by many different birds are they more likely to be red than chance alone might predict?

Finally, we can test the hypothesis that the birds visit the flowers primarily to obtain food, spreading pollen as a side effect of their feeding behavior. We can measure the amount of nectar in the flower before and after the bird visits and calculate how much energy has been consumed by the bird during its visit. Continued observations over the course of the day will tell us whether the birds gain the nutrition they need by drinking nectar, and whether the birds have other sources of food.

In addition to observations, in many cases we can design experiments to test hypotheses. One of the most powerful types of experiment is called a controlled experiment. In a controlled experiment, the researcher sets up several groups to be tested, keeping the conditions and setup as similar as possible from one group to the next. Then, the researcher deliberately introduces something different, known as a **variable**, into one group that he or she hypothesizes might have some sort of an effect. This is called the **test group**. In another group, the researcher does not introduce this variable. This is a **control group**, and the expectation is that no effect will occur in this group.

Controlled experiments are extremely powerful. By changing just one variable at a time, the researcher is able to determine if that variable is important. If many variables were changed at once, it would be difficult, if not impossible, to draw conclusions from the experiment because the researcher would not be able to figure out which variable caused the outcome. The control group plays a key role as well. Having a group in which no change is expected ensures that the experiment works as it is supposed to and provides a baseline against which to compare the results of the test groups.


For example, we might test the hypothesis that hummingbirds facilitate pollination by doing a controlled experiment. In this case, we could set up groups of red flowers that are all similar to one another. For one group, we could surround the flowers with a fine mesh that allows small insects access to the plant but keeps hummingbirds away. For another group, we would not use a mesh. The variable, then, is the presence of a mesh; the test group is the flowers with the mesh; and the control group is the flowers without the mesh since the variable was not introduced in this group.

Will the flowers be pollinated? If only the group without the mesh is pollinated, this result lends support to our initial hypothesis. In this case, the hypothesis becomes less tentative and more certain. If both groups are pollinated, our hypothesis is not supported, in which case we may discard it for another explanation or change it to account for the new information.

→ Quick Check 2 Design a controlled experiment that tests the hypothesis that cigarette smoke causes lung cancer.

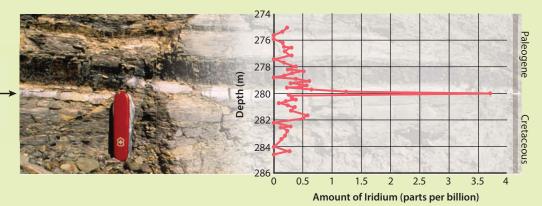
Using observations to generate a hypothesis and then making predictions based on that hypothesis that can be tested experimentally are the first two steps in the **scientific method**, outlined in **Fig. 1.2.** The scientific method is a deliberate and careful way of asking questions about the unknown. We make observations, collect field or laboratory samples, and design and carry out experiments or analyses to make sense of things we initially do not understand. The scientific method has proved to be spectacularly successful in helping us to understand the world around us. We explore several aspects of the scientific method, including experimental design, data and data presentation, probability and statistics, and scale and approximation on CounchPod.

To emphasize the power of the scientific method, we turn to a famous riddle drawn from the fossil record (**Fig. 1.3**). Since the nineteenth century, paleontologists have known that before mammals expanded to their current ecological importance, other large animals dominated Earth. Dinosaurs evolved about 210 million years ago and disappeared abruptly 66 million years ago, along with many other species of plants, animals, and microscopic organisms. In many cases, the skeletons and shells of these creatures were buried in sediment and became fossilized. Layers of sedimentary rock therefore record the history of Earth.

Working in Italy, the American geologist Walter Alvarez collected samples from the precise point in the rock layers that corresponds to the time of the extinction. Careful chemical analysis showed that rocks at this level are unusually enriched in the element iridium. Iridium is rare in most rocks on continents and the seafloor, but is relatively common in rocks that fall from space—that is, in meteorites. From these observations, Alvarez and his colleagues developed a remarkable hypothesis: 66 million years ago, a large (11-km diameter) meteor slammed into Earth, and in the resulting environmental havoc, dinosaurs and many other species became extinct. This hypothesis makes specific predictions, described in Fig. 1.3, which turned out to be supported by further observations. Thus, observational tests support the hypothesis that nearly 150 million years of dinosaur evolution were undone in a moment.

General explanations of natural phenomena supported by many experiments and observations are called theories.

As already noted, a hypothesis may initially be tentative. Commonly, in fact, it will provide only one of several possible ways of explaining existing data. With repeated observation and experimentation, however, a good hypothesis gathers strength,


How do we know? What caused the extinction of the dinosaurs?

BACKGROUND Dinosaurs were diverse and ecologically important for nearly 150 million years but became extinct about 66 million years ago.

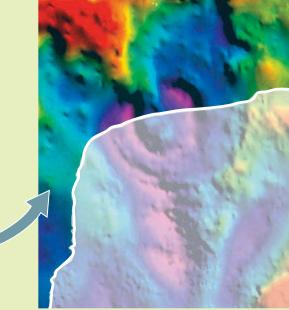
OBSERVATION

Iridium, common in meteorites, was discovered in rock layers corresponding to the time of extinction.

Photo Source: Kirk Johnson, Denver Museum of Nature & Science.

HYPOTHESIS The impact of a large meteorite disrupted communities on land and in the sea, causing the extinction of the dinosaurs and many other species.

PREDICTIONS Independent evidence of a meteor impact should be found in rock layers corresponding to the time of the extinction and be rare or absent in older and younger beds.


FURTHER OBSERVATIONS

Quartz crystals that form only at high temperature and pressure—conditions met by giant meteors as they crash into Earth occur abundantly in rock layers dated to the time of the extinction.

By 1990, geologists had located the "smoking gun"— a crater of just the right age and size in the Yucatán Peninsula of Mexico.

Photo Sources: (top left) Dr. David Kring/Science Source; (right) Image courtesy of V. L. Sharpton/ Lunar and Planetary Institute. USA.

Pacific Ocean

CONCLUSION A giant meteor struck Earth 66 million years ago, causing the extinction of the dinosaurs and many other species.

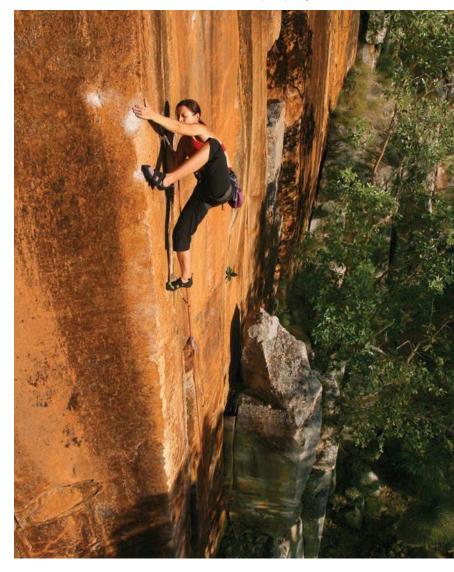
FOLLOW-UP WORK Researchers have documented other mass extinctions, but the event that eliminated the dinosaurs appears to be the only one associated with a meteorite impact.

SOURCE Alvarez, W. 1998. T. rex and the Crater of Doom. New York: Vintage Press.

and we have more and more confidence in it. When a number of related hypotheses survive repeated testing and come to be accepted as good bases for explaining what we see in nature, scientists articulate a broader explanation that accounts for all the hypotheses and the results of their tests. We call this statement a **theory**, a general explanation of the world supported by a large body of experiments and observations (see Fig. 1.2).

Note that scientists use the word "theory" in a very particular way. In general conversation, "theory" is often synonymous with "hypothesis," "idea," or "hunch"—"I've got a theory about that." But in a scientific context, the word "theory" has a specific meaning. Scientists speak in terms of theories only if hypotheses have withstood testing to the point where they provide a general explanation for many observations and experimental results. Just as a good hypothesis makes testable predictions, a good theory both generates good hypotheses and predicts their outcomes. Thus, scientists talk about the theory of gravity-a set of hypotheses you test every day by walking down the street or dropping a fork. Similarly, the theory of evolution is not one explanation among many for the unity and diversity of life. It is a set of hypotheses that has been tested for more than a century and shown to provide an extraordinarily powerful explanation of biological observations that range from the amino acid sequences of proteins to the diversity of ants in a rain forest. In fact, as we discuss throughout this book, evolution is the single most important theory in all of biology. It provides the most general and powerful explanation of how life works.

1.2 CHEMICAL AND PHYSICAL PRINCIPLES

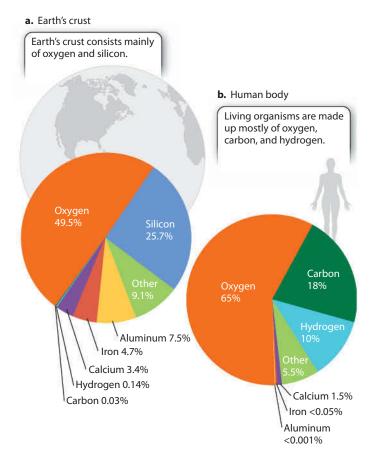

We stated earlier that biology is the study of life. But what exactly *is* life? As simple as this question seems, it is frustratingly difficult to answer. We all recognize life when we see it, but coming up with a definition is harder than it first appears.

Living organisms are clearly different from nonliving things. But just how different is an organism from the rock shown in **Fig. 1.4?** On one level, the comparison is easy: The rock is much simpler than any living organism we can think of. It has far fewer components, and it is largely static, with no apparent response to environmental change on timescales that are readily tracked.

In contrast, even an organism as relatively simple as a bacterium contains many hundreds of different chemical compounds organized in a complex manner. The bacterium is also dynamic in that it changes continuously, especially in response to the environment. Organisms reproduce, which minerals do not. And organisms do something else that rocks and minerals don't: They evolve. Indeed, the molecular biologist Gerald Joyce has defined life as a chemical system capable of undergoing Darwinian evolution.

From these simple comparisons, we can highlight four key characteristics of living organisms: (1) complexity, with precise

FIG. 1.4 A climber scaling a rock. Living organisms like this climber contain chemicals that are found in rocks, but only living organisms reproduce in a manner that allows for evolution over time. Source: Scott Hailstone/Getty Images.



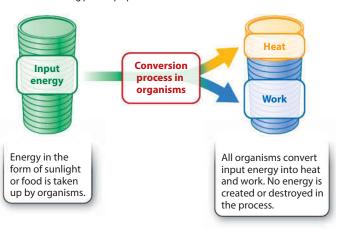
spatial organization on several scales; (2) the ability to change in response to the environment; (3) the ability to reproduce; and (4) the capacity to evolve. Nevertheless, the living and nonliving worlds share an important attribute: Both are subject to the basic laws of chemistry and physics.

The living and nonliving worlds follow the same chemical rules and obey the same physical laws.

The chemical elements found in rocks and other nonliving things are no different from those found in living organisms. In other words, all the elements that make up living things can be found

FIG. 1.5 Composition of (a) Earth's crust and (b) cells in the human body. The Earth beneath our feet is made up of the same elements found in our feet, but in strikingly different proportions.

in the nonliving environment—there is nothing special about our chemical components when taken individually. That said, the *relative* abundances of elements in organisms differ greatly from those in the nonliving world. In the universe as a whole, hydrogen and helium make up more than 99% of known matter, while Earth's crust contains mostly oxygen and silicon, with significant amounts of aluminum, iron, and calcium (**Fig. 1.5a**). In organisms, by contrast, oxygen, carbon, and hydrogen are by far the most abundant elements (**Fig. 1.5b**). As discussed more fully in Chapter 2, carbon provides the chemical backbone of life. The particular properties of carbon make possible a wide diversity of molecules that, in turn, support a wide range of functions within cells.


All living organisms are subject to the physical laws of the universe. Physics helps us to understand how animals move and why trees don't fall over; it explains how redwoods conduct water upward through their trunks and how oxygen gets into the cells that line your lungs. Indeed, two laws of thermodynamics, both of which describe how energy is transformed in any system, determine how living organisms are able to do work and maintain their spatial organization. The **first law of thermodynamics** states that energy can neither be created nor destroyed; it can only be transformed from one form into another. In other words, the total energy in the universe is constant, but the form that energy takes can change. Living organisms are energy transformers. They acquire energy from the environment and transform it into a chemical form that cells can use. All organisms obtain energy from the sun or from chemical compounds. Some of this energy is used to do work such as moving, reproducing, and building cellular components and the rest is dissipated as heat. The energy that is used to do work plus the heat that is generated is the total amount of energy, which is the same as the input energy (**Fig. 1.6**). In other words, the total amount of energy remains constant before and after energy transformation.

The **second law of thermodynamics** states that the degree of disorder (or the number of possible positions and motions of molecules) in the universe tends to increase. Think about a box full of marbles distributed more or less randomly; if you want to line up all the red ones or blue ones in a row, you have to do work—that is, you have to add energy. In this case, the addition of energy increases the order of the system, or, put another way, decreases its disorder. Physicists quantify the amount of disorder (or the number of possible positions and motions of molecules) in a system as the **entropy** of the system.

Living organisms are highly organized. As with lining up marbles in a row, energy is needed to maintain this organization. Given the tendency toward greater disorder, the high level of organization of even a single cell would appear to violate the second law. But it does not. The key is that a cell is not an isolated system and therefore cannot be considered on its own; it exists in an environment. So we need to take into account the whole system, the cell plus the environment that surrounds it. As energy

FIG. 1.6 Energy transformation and the first law of

thermodynamics. The first law states that the total amount of energy in any system remains the same. Organisms transform energy from one form to another, but the total energy in any system is constant.

